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340 F.J.WRIGHT AND J. F. NYE

When a monochromatic wave is scattered by fixed objects it produces a stationary
three-dimensional diffraction pattern, but if the driving oscillation is a quasi-
monochromatic pulse the diffraction pattern naturally changes with time. Both the
fixed and the moving patterns may be usefully characterized by their dislocation lines,
where the amplitude is zero and the phase is indeterminate. The paper studies the
relation between the fixed dislocation lines (continuous wave (c.w.) null lines, inter-
ference fringes) of the monochromatic pattern and the moving lines of the pulse pattern.
The latter sweep out surfaces, called the dislocation trajectories.

A simple model system with two interfering beams illustrates how dislocation lines
can appear and disappear from the head or tail of the pulse and how pairs of dislocations
can be created in two different ways. It also shows how the shape and bandwidth of the
pulse affect not so much the positions of the trajectories, but their lengths and the way
they are traversed in time by the dislocations.

In a general theory the pulse is regarded as a slightly perturbed continuous wave and
its behaviour is deduced from the continuous wave response of the (linear) system
within the bandwidth of the pulse. The method is based on obtaining the fastest initial
convergence of a functional series. For very small bandwidth it leads to a generalization
of the concept of group velocity. In this case dislocations by interference appear only
very close to c.w. nulls. For larger, but still small, bandwidth, moving dislocations
appear whose trajectories are approximately parts of frequency minimum surfaces, that is,
surfaces in the continuous-wave diffraction pattern where the amplitude is a minimum
with respect to changes in frequency. These surfaces contain the c.w. null lines. In the
next approximation it is found that the trajectory surfaces nearly, but not quite,
contain these lines. In certain two-dimensional cases the trajectories follow valleys in
the landscape defined by the continuous-wave amplitude pattern. The prediction of
the arrival times of the dislocations is delicate. General formulae, suitable for numerical
computation, are given in terms of frequency derivatives of the continuous-wave
diffraction pattern. They give successful results in three applications to pulsed wave
fields: the diffraction pattern near a cusped caustic, the two-beam model, and a piston
radiator.

1. INTRODUCGTION

Conventional remote sensing systems, such as radar or ultrasonics, customarily use pulses of
quasi-monochromatic waves. When interference effects are encountered a useful, and usual,
approximation is to consider the waves to be monochromatic. If an oscillator produces a con-
tinuous harmonic scalar wave, which is scattered by a system of fixed objects, the resulting
three-dimensional diffraction pattern is fixed in space. If, however, the original oscillation is
modulated in amplitude so as to produce a pulse of finite length, rather than an infinite wave
train, the resulting diffraction pattern will naturally change with time. In this paper we study
the relation between the moving diffraction pattern produced by the pulse and the corresponding
stationary diffraction pattern produced by the continuous wave.

It is useful to regard both diffraction patterns as based on their dislocations (Nye & Berry
1974 ; Nye 1981). These are structurally stable features, being singular lines in space where
the wave amplitude vanishes and the phase is indeterminate. For the continuous wave the
dislocation lines are stationary and are simply localized interference fringes; for the pulse they
are moving lines which trace out surfaces, called the dislocation trajectories. Our main concern
will be to explore the relation between these basic structural elements of the two diffraction
patterns: the fixed dislocation lines of the monochromatic pattern and the moving dislocation
lines of the pulse pattern, with their associated trajectories.
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WAVEFRONT DISLOCATIONS 341

2. A TWO-BEAM MODEL

In §3 we give a general theory for pulses of small bandwidth; but it is helpful to begin with a
two-dimensional model system which, although simple, nevertheless displays some of the most
important features of the general case.

QN |

Ficure 1. Two-beam model. The sources S,, S, emit plane-wave pulses whose strength varies linearly parallel to
the wavefronts. The amplitude is zero on the ‘null normals’ P,Q,, P,Q,. Dislocations move along the
vertical trajectories (dashed lines) through the c.w. nulls ..., N3, Nj, N;, Ny, ... . The dislocations may be in
the head (h) or the tail (t) of the pulse.

Two infinite sources of plane waves S, and S, are set at an angle 2« to one another (figure 1)
in a2 homogeneous non-dispersive medium. To start with they emit continuous waves of angular
frequency w,, in phase with one another. If the plane waves were uniform in amplitude and the
two sources were equal in strength, they would produce a set of vertical interference fringes
through the points ... Nj, N;j,N;, N,, ..., the amplitude along the fringes being exactly zero.
In a general two-dimensional diffraction pattern the zeros are not lines but points. This is because
both the real and the imaginary parts of the complex wave amplitude have to vanish; each of
these conditions separately defines a line, and the lines intersect in points. To remove this de-
generacy in our model we impose spatial modulation on §, and S,: the amplitude of each plane

wave is made to vary linearly parallel to its wavefronts. Modulation parallel to the wavefronts
22-2
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342 F. J. WRIGHT AND J.F. NYE

would normally spread out by diffraction, but if it is merely linear the wave propagates without
change. Accordingly, we arrange the amplitude to be zero at P, and P, and to ¢ncrease linearly to
the left at the same rate for each source. The wave normals through P; and P, intersect at C,
and it can be seen that the locus of points where the two interfering continuous waves have the
same amplitude is the horizontal line through C. Destructive interference will only be complete
at points on this line, and the result is that the vertical interference fringes collapse into point
nulls at ... N3, Nj, Ny, N, ... . The degeneracy has been removed.

The sources S, and S,, amplitude modulated parallel to their lengths as just described, are
now made to emit simultaneously the pulse represented by the complex function

Po(t) = (1) et (1)

where f(¢) is an envelope function. In this section we shall assume, for simplicity, that f(¢) is real
and positive definite but in later sections we shall allow f(¢) to be more general. The actual
oscillation is either the real or the imaginary part of ¢, (¢), or some linear combination of the two.
We know that there will now be a field of moving dislocation points (Nye & Berry 1974). Take
axes Ox, Oz (figure 1). At a given instant ¢ the dislocations are at the points r = (x,z) where
both the real and imaginary parts of the received signal ¥(r,¢) are zero. Alternatively stated,
they are at the points r where, at a given instant ¢, the wave amplitude | (r, )| vanishes and
hence the phase is indeterminate. The moving dislocation points trace out lines in the two-
dimensional observation space of r, which are the dislocation trajectories. In the limit as f{¢)
becomes infinitely long, so that ¥ (¢) is a continuous oscillation, these linear trajectories must in
some way condense on to the continuous-wave null points (called hereafter c.w. nulls). One of
our tasks is to examine precisely how this happens.

First we find the trajectories. The complex wave function at an arbitrary point (x, z) may be

written as

Yozl =5 (1 -x—"l+§1) Volt—7) +5 (1 —%—f-l) Volt—7), 2)

where x, = OC, z, = OK, and 7,, 7, are the travel times from S, and S, to (x,z). The linear
modulating factors are each taken as } at O. Writing

. T=3(11+72), AT =3(1,—70), (3)
and using (1) we have

Y(x,z,t) = %e‘iwo(t“*){(l —ﬁ+—z—)f(t—~?—-A'r) ei“'oAT+(1—ﬁ——z—)f(t—?+AT) e‘“’oA’}. (4)
X4 104

In terms of position in the field A7 is given by
At = (xsina) /e, (5)
and the mean time delay or travel time 7 of the two separate pulses is
T=7(2) = Ty+ (zcosa) /e, (6)

where 7, is the mean time delay at O and ¢ is the wave velocity. The ‘null normals’ P, Q ,,P,Q,
divide the space into four sectors according to the signs of the two linear modulations. For the
moment we look only at the sectors to the right and left of G where the two signs are the same.
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WAVEFRONT DISLOCATIONS 343

Then the condition for a dislocation, namely ¥ (x, z,t) = 0, gives

woAT = (n+%)n  (n = an integer) (7)
and (1—%+fl>f(t—?—m) = (l—i—fl)f(t—ﬂm), (8)

assuming f(t) > 0. Equation (7) shows that, for a dislocation, the two carrier waves must interfere
destructively, while (8) shows that, in addition, the envelopes of the two pulses must be of equal
height (figure 24) at the time and place in question. The actual signal at a point where (7) is
satisfied is shown in the upper diagram of figure 25. Equation (7), which is independent of ¢

Ficure 2. Interference of two pulses. (a) The dislocation occurs at the time when the envelopes of the two pulses
are of equal height. (b)) The combined signal, Re ¥(¢), contains a dislocation at ¢ = 7+ = ;. The lower
diagram shows the wave that would be received if the sources were unmodulated. The phase difference
between the modulated and unmodulated waves is 0 or .

(and also of the spatial modulations, apart from their relative signs), shows that the dislocation
trajectories are simply vertical lines through the c.w. nulls ... N3, Nj, N, N, ..., as indicated by
the dashed lines in figure 1 terminating on P; Q) and P,Q ,. Equation (8) then determines the
time ¢ of the dislocation. In fact, a point that satisfies (7) lies on a trajectory only if (8) gives a
real finite time ¢ for the dislocation. We shall later find as a consequence that, depending on the
pulse shape, only parts of the dashed lines shown in figure 1 are actually used as trajectories.

It follows from (4) and (7) that on a trajectory the signal can be expressed as

Y (x,2,8) = R(x, 2, ) exp {wy7(2) — wot + §m}, (9)

where %(x,z,t) is a real envelope function. Thus w,7(z), which varies linearly with z by (6),
measures the spatial variation of the phase of the carrier wave within the envelope. The time
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344 F.J. WRIGHT AND J. F. NYE

t = 7(z) can thus be thought of as marking the time of a particular phase of the carrier wave as
the receiver moves upwards.
It is convenient to measure the dislocation time ¢ relative to 7, defining

[=t-7, (10)

as the relative delay of the dislocation. Now { varies as the receiver moves upwards, and therefore

the dislocation moves relative to the carrier wave; in the nomenclature of Nye & Berry (1974)

and Nye (1981), which is taken from crystal dislocation theory, the dislocation glides.
Equation (8) for the dislocation time can be expressed more conveniently as

(z22+2) f(E=AT) = (25— 2) f(i+A7) (|2 < |22]), (11)

where z, = z,(x) = z,(x; —x) /x, is simply the z-coordinate of the end of the trajectory that lies
on P,CQ,: for instance B, for the trajectory A,B,, and B, for A;B,. Thus the value of z, depends
on the particular trajectory being considered. Solving for z gives

SE+AT)—f(i—AT)
SE+AT) +f(I—AT)

The rate of sideways linear modulation of the two waves, provided it is non-zero, does not affect
the position or time of the dislocation; it does affect the steepness of the amplitude well in which
the dislocation sits.

We now derive an expression for the velocity of the gliding dislocation as it passes through a
c.w. null point in this model, assuming the pulse envelope f(¢) to be analytic and peaked (that
is decreasing monotonically from its non-degenerate maximum at ¢ = 0). At a c.w. null the two

2= (12l < |za]) (12)

constituent pulses are of equal strength and figure 2a shows that, provided A7 is small compared
with the pulse length, the relevant parts of the pulse envelope are close to the pulse maximum.
We therefore approximate f () by

SO =f(0)+4/(0) & +..., (13)

substitute this form in (12) and solve for . Thus

I~ Z;%%%E (At small). (14)

Then differentiating with respect to z gives

di f(0)
- R — . 1
( dz)z=0 7/ (0) Ar (AT small) (15)

We see that the glide reverses sign with z, and with Ar; £(0) is positive, while f”(0) is negative.
Thus between O and C in figure 1, where At and z, are both positive, the dislocation glides from
tail to head, while to the left of O and to the right of C it glides from head to tail. The physical
reason is (see figure 2a) that when the stronger of the two signals arrives first the intersection of
the envelopes, and therefore the dislocation, is in the tail. Figure 1 is labelled accordingly.

The actual velocity v of the dislocation is given by

1 d¢t _d7 di _cosa f(0)

Lot tor0)ar

(At small) (16)
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WAVEFRONT DISLOCATIONS 345

with the use of (6), where the first of the two terms comes from the motion of the carrier wave.
For displaying the relative motion of the carrier wave and the dislocation, slowness (reciprocal
velocity) is the natural quantity rather than velocity (Nye 1981).

In describing dislocation glide one must be aware of a trap. If the last term in (16) is sufficiently
negative, v can also be negative. Figure 3 shows the track in (z, ¢) of a dislocation with negative v.
We can think of this dislocation in two ways. In a series of time displays like the upper diagram of
figure 24, such as one might have on an oscilloscope, as z increases the dislocation moves from
the tail of the pulse to the head. However, in space, a series of snapshots with increasing ¢ would
show the dislocation passing from head to tail. In describing glide we must take care to specify
whether we are using the time or the space picture.

z D /head

tai]/
N\ 7

7 SN\
S S

Ficure 3. The line DD’ is the track in (z, ¢) of a dislocation moving with negative velocity v.

We have not yet considered possible dislocation trajectories in the two sectors above and
below G, where the signs of the two linear modulations are opposite. Equations (7) and (11) are

now replaced by )
woAT =nn  (n = an integer) (17)

and (22 +2) f(E—AT) +(2—2) f(E+AT) =0 (|2] > |2,]). (18)

The trajectories defined by (17) interleave the previous ones, as shown in figure 1. Equation (18)
can be solved for z to give
z _ fE+AT)+f(f—AT)
— = — . 1
z, fO+AT) —f(i—A7) (2] > |z.l) (19)

Note that (18) has no solutions for / when A7 = 0. Therefore the z-axis (n = 0) is never used as a
trajectory for any positive definite pulse envelope (but see the discussion of intrinsic dislocations in
§3.2).
2.1. Hyperbolic secant pulse envelope

Some results turn out to be sensitive to the form of the envelope function f(t), particularly its
rates of rise and decay, and so we need to make a realistic choice. A Gaussian pulse, for example,
would not be a good choice, because an experimental pulse is unlikely to have a tail that decays
as fast as exp (—¢2); it is more likely to decay as exp (—¢). A simple symmetrical pulse with the

latter behaviour is the hyperbolic secant
f(t) =sechot (o >0), (20)

where o1 is a measure of the pulse length, and we shall adopt this as our principal example.
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346 F.J.WRIGHT AND J. F. NYE

With this pulse shape, formula (15) becomes
di/dz = —1/z,0%Ar. (21)

The limit o — 0 is the continuous wave and we see that this gives df/dz - co and hence dz/d¢ = 0.
The track in (z,¢) (figure 3) becomes horizontal and the dislocation is permanently at z = 0.

We can now calculate in more detail the behaviour of the dislocations produced by a hyper-
bolic secant pulse in this two-beam model. The trajectories are parts of the sets of vertical lines
shown in figure 1, and we must now use equations (12) and (19) to find the (z,¢) relation. In
the right and left sectors equation (12) with (20) gives

z/z, = —tanh (A7) tanh (o7), (22)
or equivalently [= —%_ artanh (m ) , (23)
2

Y

Qo
i

Ficure 4. Two-beam model with a hyperbolic secant pulse envelope. (a) The z, #-relation, for cAT = 1, z, > 0.
(b) Worldlines of the dislocations. (¢) The same as (b) but with dt/dz positive at z = 0.

with |z| < |z,tanh 0A7|. The last restriction is important; it means there are no solutions for £
when z is outside the indicated range and that this range is less than the full range |z| < |z,| of
the broken lines shown in figure 1. In other words, as we mentioned before, only a part of each
of these lines, centred on the c.w. null, is actually used as a trajectory. The range of z is different
for each trajectory because both z, and A7 vary (linearly) with x. For large |x|, that is large |A7],
the trajectories approach the full range |z| < |z,|.

To study the interleaving trajectories in the upper and lower sectors we use equation (19)
with (20) to give

z/z, = —coth oA7 coth of (24)
or, solving for ¢ [= —lartanh — % (25)
’ g ’ o ztanh oA7)’

with the restriction |z| > |z, coth oA7|. Again, only part of the full range |z| > |z, is actually
used by the dislocation as a trajectory.

For clarity of description we now choose z, and A7 to be both positive (the range of xfrom O to C
in figure 1). Figure 4a shows z as a function of f given by equations (22) and (24), and figures 4 b,¢
show this converted to a relation between z and ¢ according to the transformation, from (6)

and (10),
t =T+ (zcosa)/c+i. (26)
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WAVEFRONT DISLOCATIONS 347

Figures 45, ¢ are obtained from figure 44 by shifting to the right and shearing parallel to the ¢
axis. They differ in the sign of d¢/dz at z = 0; for using (21) we have

ds cosa i
(—CE)z=0 B - (27)

¢ 2, O2AT’

which can clearly be positive or negative.

/
P , 7 / 4
/ d 4
> / /
A S
~/ Y

2

_ / /
2 y p \:;x\ V2
/¥R s 7
/ / /
/ / /

FiGure 5. As for figure 45, but with cAr = ~1, z, > 0.

In figures 44, ¢ the central dashed line is the worldline of the reference time ¢ = 7(z). When
z-> 0 or z—> + oo the two interfering pulses are of equal amplitude, and in this case, if the pulse
envelopes are symmetric, 7(z) clearly defines the centre of the resulting (symmetric) composite
pulse envelope. Therefore in these limits we can regard 7(z) as the pulse centre time. (In the general
case, however, it is not clear how to define the ‘pulse centre’, but see §3.7, and note that 7; =7
in the above limits.) In relation to typical trajectories such as the relevant portions of DE,
A;B,, FG in figure 1 we could read the dislocation worldlines in figure 4 as follows. As a receiver
moves from infinity to E a dislocation seen on a time display (oscilloscope screen) in the centre
of the pulse moves towards the tail and leaves at a point below E. As the receiver moves from A,
to B, a dislocation enters the tail at a point above A,, passes through the centre of the pulse when
z = 0 and leaves through the head at a point below B,. On FG a dislocation is seen to enter the
head at a point above F and move asymptotically to the pulse centre.

If, on the other hand, we ask how the spatial pattern of the ascending composite pulse changes
with time we read from figure 454 that there is a dislocation on DE near the pulse centre which
lags behind and leaves the tail at a point below E. Meanwhile, at a point below B, a dislocation
enters the head of the pulse, moves downwards and is left behind at a point above A,. A further
dislocation appears above F in the head of the pulse, and is ultimately caught up by the pulse
centre.

The reading of figure 4¢ as a series of time displays is very similar to figure 45, but the succession
of spatial patterns represented is rather different. At P a pair of dislocations is born; one moves
backwards to the tail while the other moves rapidly forwards to annihilate at QQ another dis-
location that entered through the head and moved backwards. One way of achieving figure 4c,
and hence pair creation and annihilation, is to decrease the wave angle a. Then z, increases
without limit and the first term in (27) dominates. The critical value of « is arctan (M$%/L),
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348 F.J. WRIGHT AND J.F.NYE

where M is the relative delay (2A7) between the two pulses and L is the pulse length 201, both
measured in carrier wave periods.

When z, and A7 are of opposite sign, that is, the range of x in figure 1 is to the left of O and to
the right of C, 7 changes sign and the dislocation worldlines in (z, ¢) are as in figure 5. In the
changing spatial pattern there is now pair annihilation at R in the head and pair creation at S
in the tail. These types of dislocation behaviour also occur in the more realistic piston radiator
model (Wright 1977; Wright & Berry in preparation). As o — 0 (continuous wave limit) the
central worldlines in figures 45 and 5 approach the ¢-axis and the upper and lower ones recede
to infinity, leaving a single stationary dislocation at z = 0.

2.2. Gaussian pulse envelope

A similar analysis for the Gaussian pulse envelope

, S () = exp (—}o?f) (28)
(chosen to have the same-shaped peak up to quadratic terms as the hyperbolic secant in (20))
gives, in place of (22),

1 z
[ = ——FA—Tartanhz; (IZI < |Zg|) (29)
. . 1 z
and, in place of (25), f= —F-A—Tarta.nhz2 (|2] > |z)- (30)

Qualitatively the corresponding dislocation worldlines are the same as shown in figures 45, ¢
and 5 for the hyperbolic secant pulse envelope, but with the important difference that the
asymptotes are exactly at the levels z = + z,, so that the full ranges of the broken lines in figure 1
are used as trajectories. Note that the last statement is true for all non-zero o, but that for o = 0
the used parts of these lines suddenly collapse on to the c.w. nulls. We have already remarked
that the hyperbolic secant pulse is more realistic than the Gaussian, whose rise and fall is un-
physically rapid; we now see that the dislocations produced by the hyperbolic secant pulse
display a smoother approach to the continuous wave limit.

2.3. Lorentzian pulse envelope

Whereas the Gaussian envelope decays faster than the hyperbolic secant, the Lorentzian
envelope
S(0) = (1+3o%2) 7, (31)
again chosen to give the same shape of peak up to quadratic terms, decays more slowly. Its
dislocations exhibit qualitatively new features, as we now show.
Equations (12) and (19), with (31), result in

¢ = —2(oA7) (of) /{2 + (0AT)? + (01)3}, (32)
_[z/z, if 2| < |z
where &= {zz/z if |z| > |22|,} , (33)

as shown in figure 6. Shearing these curves parallel to the 7 axis gives the dislocation worldlines
of figure 6. As before, d¢/dz at z = 0 can be positive or negative. Figure 6¢ shows the worldlines
for the regions where A7 and z, are opposite in sign (to the left of O and to the right of G in
figure 1).
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There are two new features in figures 6 5, ¢. One is that the worldline for the central dislocation
now beginsand endsat z = 0. The other is the presence of points where the tangent is horizontal,
dz/dt = 0 (previously we found points where it was vertical). This means that pair creation and
annihilation is now seen in the time (oscilloscope) display as the receiver is moved vertically, as
well as in the changing spatial pattern of the upward-moving composite wave train. The reason
is simple. Figure 7 shows two Lorentzian pulse envelopes of equal length with their delays and
relative strengths arranged so that they touch. This would represent the moment of pair creation.
It is impossible to arrange either Gaussian or hyperbolic secant pulse envelopes (of equal pulse
length) in this way.

s
z (a) A (b) \ /,// A (c) 4 ,
v 4
N RIY L7,
e i’ ¢
—- / 7 "/ s //
> 7 s > A
> x® 4 7/ N
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N

7/
—22F —2o / 7 — d / 4
) 29 7 / 22 s
s 4 / , /s /
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-~ ~ /
Y ~ 4
S \ v s
7’ 7 \
Ay s Vs

FicUrRe 6. Two-beam model with a Lorentzian pulse envelope. (a) The z-relation, for oAT = 1, z, > 0.
() World-lines of the dislocations: dt/dz at z = 0 can be positive (solid curves) or negative (dashed curves).
(¢) World-lines for oAt = —1, z, > 0.

——
t

Ficure 7. Two Lorentzian pulse envelopes of equal length arranged so that they touch.

Thus two distinct types of pair creation may be recognized during the glide of dislocations: the
first corresponds to the worldline being vertical (the type described by Nye & Berry (1974)) and
the second, which is new, to the worldline being horizontal.

2.4. Summary of results for pulses

We learn from these examples that in the two-beam model the pulse shape does not affect the
positions of the dislocation trajectories but it does affect their length and the way they are
traversed in time. With the realistic hyperbolic secant pulse the trajectories are traversed
monotonically with time, but with the less realistic Lorentzian pulse the dislocations come
momentarily to rest at the end of a trajectory and reverse direction. An important result is that,
as o — 0, the dislocations in hyperbolic secant and Lorentzian pulses become progressively more
localized in the neighbourhoods of the c.w. nulls. Dislocations in Gaussian pulses do not: the
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length of the trajectory remains the same right up to the limit o = 0, when it suddenly collapses
to zero; but this behaviour would be hard to observe because the dislocations far from a c.w. null
would be in the far head or tail of the pulse and liable to be lost in the noise.

2.5. Pair creation in general

How general are the two types of pair creation shown by the Lorentzian pulse? Stepping aside
for the moment from the two-beam model, if we consider the general behaviour of point dis-
locationsin the two space dimensions (x, z) we note first that the worldline in (x, z, #) is a continuous
smooth line. Generically there would be special points on the line where it touches a plane
¢t = constant; these points represent pair creation of the first kind. But generically there will be
no point on the line where the tangent points exactly along the ¢ axis, and therefore no point on
the line where, even locally, the behaviour is that corresponding to the second kind of pair
creation. The reason it occurs in the two-beam model is that here the dislocation worldlines in
(x, z,¢t) lie entirely in (z,¢) planes (glide), with no component of motion parallel to Ox (climb).
Climb would remove the second kind of pair creation.

A (a) B /

Ficure 8. Two-beam model with a ‘smooth-step’ envelope function, showing how the dislocations reach their
final positions at the c.w. nulls (z = 0). (a) Worldlines for At > 0, z, > 0: with pair creation and annihi-
lation (solid curve) and without (dashed curve). (b)) Worldlines for A < 0, z, > 0.

2.6. Establishment of the continuous-wave nulls

If a continuous wave is ‘switched on’, where do the nulls that are eventually stationary come
from? We can study an example in the two-beam model by taking as the envelope the ‘smooth-

step’ function
f(@) =4(1 +tanh o), (34)

which rises from near 0 to near 1 in a time of order o—1. Then equations (12) and (19) give

_ tanho({+A7) —tanh o (/- A7)
" 2+tanho(f+A7) +tanho(f— A7)’

¢ (35)

where, as before,

coffn <l

zy/z i |z] > |z,

and when this is combined with equation (26) we find the dislocation worldlines shown in
figures 8a, b.
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Only part of each dashed line in figure 1 is used as a trajectory: qualitatively, those parts
labelled “head’. In all cases, with increasing ¢, dislocations that finally become deposited at the
c.w. nulls enter through the head of the step. But the process may be complicated by pair creation
(solid curve in figure 84). In figure 8a it is accompanied by another dislocation which enters
through the head and moves to infinity, and in figure 8 by two dislocations in the lower part
of the field which mutually annihilate at K. The details must depend on the shape of the step
but because the hyperbolic tangent approaches its asymptote in a simple exponential way this
example is thought to be quite realistic.

3. GENERAL THEORY
3.1. The physical system

We now present a more general theory. As before, we represent the original oscillation by the
complex scalar ,(¢). Thus we suppose that a signal generator S, produces an oscillation that is
either the real or the imaginary part of y(¢), or some linear combination of the two. The scalar
¥o(¢) can represent either a continuous oscillation or a pulse. We suppose that all processes are
linear. After various time delays and linear filterings, signals from S, are radiated from sources
S1, Sy, ..., S, into a general medium. The waves are scattered at stationary scattering objects,
and the diffraction pattern is observed by placing a movable receiver at the point P given by the
position vector r. After a further delay and linear filtering the ‘received signal’ y(r, ¢) is displayed
on an oscilloscope. The receiver at P need not be perfect: in general, it will have a polar diagram
for reception, a certain size and a certain bandwidth. But we make sure that these characteristics
depend only on the position of the receiver: for example, when at P it must point in a fixed
direction, but this direction can vary as P is changed.

This system, which is linear throughout, is general enough to represent either a scattering
experiment with a single source or an interference experiment that uses several separate trans-
mitting transducers all supplied by a single pulse generator. It corresponds closely to what can
actually be done in practice, for example in an experiment with ultrasonic pulses.

3.2. Pulses as perturbed continuous waves: dislocations

It is always possible, in principle, to deduce the response of a linear system when driven by a
pulse from a knowledge of its continuous wave response, via a Fourier transform. To examine
particular features of the pulse response, such as its dislocation structure, one needs to evaluate
the integral representation derived from the Fourier transform, which is generally not possible
in a simple closed form. Further, it requires knowledge of the continuous wave response for all
frequencies, which in practice is not usually available.

However, if we restrict ourselves to pulses with spectra concentrated about their centre
(carrier) frequency, it should be possible to deduce the pulse behaviour approximately from the
continuous wave response within the pulse bandwidth. We now do this by developing a pertur-
bation expansion in o, the pulse bandwidth, and then solving for the phenomenon of interest,
here the dislocations, for small o. (Real pulses, produced by resonant systems, tend to have small
values of o; for example o /w, ~ 10~2 would not be unusual.) The specific objective in §§3.2-3.6
is to evolve a workable numerical method of computing the dislocation trajectories and times
from information about the continuous wave diffraction pattern at frequencies near the centre
frequency. However, we keep the formulation as general as possible with a view to its application
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to other pulse phenomena, such as tracing the course of a pulse maximum (which might have
more immediate relevance to current remote sensing methods).

‘The Fourier transforms of the original oscillation ,(¢) and of the received signal (r,¢),
namely

Vo) = @)t [ pemdy B o) = o7 pngenan o)
are related by the transfer function for the whole system a(r, w):

¥ (r,0) = a(r,0) o(v). (37)

The transfer function a(r, w) defined in this way evidently includes not only the characteristics
of the diffraction pattern in space, but also those of the receiver. If, however, the receiver were
perfect, the function a(r, ) would constitute complete information about the diffraction
pattern, and we shall think of it in that way. For each frequency w, a(r, w) then represents a
spatial variation of complex amplitude, which is, in fact, the monochromatic diffraction pattern
for that particular frequency of radiation. Thus a(r, ») represents the family of monochromatic
diffraction patterns for all frequencies.

A very general class of linear systems can be represented by a transfer function of the form
a(r, w), which can include inhomogeneity and dispersion. Only singularities of the transfer
function in the finite complex frequency plane affect the present general theory: we assume these
singularities to be poles. Causality requires the poles to lie only in the lower half w-plane (see for
example Pippard 1978). If a system is excited transiently, such poles will produce damped
sinusoidal responses which are largely independent of the form of the drive. A pole at complex
frequency produces a maximum, or resonance, in the real-frequency response, associated with a
natural frequency of the system. (However, the converse is not true; a frequency maximum of the
transfer function need not be associated with any singularity in the finite w-plane, as shown by
the two-beam model, and by the even simpler example a(w) = cos wr, where 7 is a constant.)
We shall see that the assumption that a(r, w) is an entire function of w (that is, has no singularities
in the entire finite complex w-plane) leads to a convergent, rather than asymptotic, perturbation
expansion.

Resonances in a medium usually lead to absorption, that is, minima in the transfer function.
Such resonances are perhaps more aptly called ‘anti-resonances’ from our point of view. They
may be associated with complex zeros, but will not affect the analyticity of a(r, w). However,
practical transducers are usually designed to resonate near the carrier frequency, and these
resonances will normally introduce poles into a(r,»). We may still be able to model such a
system by an entire transfer function driven by a suitably modified pulse, or restrict attention to
that part of the system (for example, just the medium) which has an entire transfer function, and
in what follows we shall mainly assume this to be the case.

Let the original oscillation now be of the form (1), namely

Yolt) =f(2) e7int. (1)

Subject only to the existence of its Fourier transform, we initially allow a completely general
complex f(¢), which describes both amplitude and phase modulation. Then

Polw) = flo-w,), (38)
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where f () is the Fourier transform of f(¢). Hence the received signal is

U(rt) = @n)t [ F(r, 0)etdo

= (21t)‘%f00 a(r, ) f(w—w,) et dw (39)
with the use of (37) and (38). ”

We shall assume that the envelope function £ (¢) is slowly varying; so f(w — ,) will be concen-
trated around @ = w, and only values of the integrand for w near w, will contribute significantly
to this integral. Then, if we make a Taylor expansion of a(r, w) about w,, the resulting series
representation for y(r, ¢) should converge rapidly. In this way we can expect to deduce approxi-
mately the received pulse pattern and, in particular, its dislocation structure, from knowledge
of the monochromatic diffraction patterns for frequencies at and near w,.

The Fourier transforms (36) are invariant under shifts in time; so we are free to choose a local
time origin T(r) when we invert (r, w). Accordingly we define a local time #(r) = ¢ — T(r), and
write (39) as © 3
vt = (m [ falr, )70} Tw - 0g) e do, (40)

In effect, we have replaced the original transfer function a(r, w) by the delayed transfer function
Ap(r,0) = a(r,w) e 10TO), (41)

where the subscript 7" is to remind us of the functional dependence of 4 on T(r).

At first sight we appear to have made the problem more complicated, but the use of this local
time origin turns out to be the crux of the theory, and the choice of 7(r) its most subtle facet.
It is a central difficulty that there is no absolute way of determining 7°(r). No exact results can
depend on T(r), but its choice affects the initial rate of convergence of the perturbation series.

We shall find that the best choice for T(r) depends on where we decide to truncate the
perturbation series. In the lowest-order approximation, appropriate only for very long pulses,
where we keep only the first term of the series, the optimal choice for T(r), denoted by Ty(r),
has a simple physical significance which we now describe.

First consider the trivial example where a pulse is emitted and then received without change
at r, after a delay 7(r). We have

Y(rt) =Yoft—1(n}, ¥(r,0) =9 (v) (42)
so that a(r,w) = elv®,

Then, if Ty(r) is chosen to be 7(r), we note that 4,(r,w) = 1.

More generally, in equation (40), if f is sufficiently concentrated, that is, if the pulse is long
enough, a good approximation should be to replace A,(r, w) by 4,(r,»,), provided also that
Ap(r, w) varies sufficiently slowly with w. The function 4,(r, w) will vary with w both in ampli-
tude and in phase. We cannot alter the rate of change of its amplitude by adjusting T(r), but
we can at least reduce to zero the rate of change of its phase at w = w,. If y(r, w) denotes the
phase of A, (r, »), and ¢(r, ») denotes the phase of a(r, ), we have from (41)

y=¢-o0T (43)

o  _ (%
and hence (a_‘“)w=w0 = (6—(‘-))0)=w0 -T. (44)
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Thus, by choosing 7; = (3¢ /dw),_,,, we secure (dy/0w),_,, = 0, as we wanted, and we show
later (§3.5.1) that this choice for 7} is indeed optimal. In the simple example above it would give
Ty(r) = (7).

Having thus chosen Ty(r) we put 4,(r, ) = Ay(r,w,) in (40) and invert the Fourier trans-
form to obtain )

Y(r,8) m Ap(r, w) et f(I) = a(r, w,) e7i0® f (1= To(r)). (45)

In this approximation the pulse waveform is simply the carrier wave e~i? propagated to the
point r by the transfer function a(r, »w,) and modulated by the envelope function f(¢) delayed by
Ty(r). Therefore we shall call Ty(r) the pulse delay time. Since the phase of a(r,w,) is ¢(r, »,),
the phase of the carrier wave is evidently

@(1, 0p) — 0yt = — Wt — (1, o) / W},

from which we recognize that its delay time is ¢(r, w,) /@y, in contrast to T = (dp/0w),_,, for
the envelope.

In a general system, driven by a short pulse, the signal received at r will consist of a sequence
of differently delayed pulses arriving from the different sources (which may be continuously
distributed) and via different routes. As the pulse length is increased, the sequence of pulses will
begin to merge. For a pulse consisting of a modulated carrier, as the pulse length tends to infinity,
the envelope of the received signal will look like a single scaled copy of the envelope of the driving
pulse, from (45), delayed by the time 7;(r). Note that we let the pulse length tend to infinity,
but not become infinite, so that we can still discern the shape of the envelope.

To illustrate the connection of this discussion with the group velocity phenomenon consider a
plane wave travelling a distance x through a uniform dispersive medium with wave number
k(w). Then the transfer function is a(x, 0) = ko,
From standard wave theory the propagation of quasimonochromatic plane wave pulses is
described by the group velocity v = (do/dk),_,..

Then, if the driving pulse ¥, (¢) = f(¢) e~1*t is quasimonochromatic, the signal received at x is

P(x,t) = ellkwda—oot) f(f —x/v,)
— alx, 0) et f{t—Ti(x)), (46)
where Ty(x) = (dk/dw),_,, x.

Equation (46) has precisely the form of our general result (45), and T(«) is indeed the rate of
change of the phase ¢ = k(w)x of a(x, ») at w = w,. This prescription for T; clearly depends on
0, in general. Of course, if the medium is non-dispersive 7;(x) reduces to x/c, where ¢ is the wave
velocity.

For non-planar waves which exhibit diffraction this simple prescription for the pulse delay
time in terms of the group velocity ceases to be possible. The alternative prescription

Ty = (09 /00) 0,
constitutes a generalization of the idea of group velocity to much more general (and hence
realistic) systems. It is well known in linear systems theory (see for example Faulkner 1969) as
the ‘group delay time’, but the derivation is different. Let us note that we have yet to confirm our
crude derivation of equation (45) and to justify the prescription for Ty(r).
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However, the main purpose of this paper is to find wavefront dislocations, and it is helpful to
notice that they can arise in two different ways. If the driving pulse envelope f(¢) has any zeros,
these will propagate through the wavefield; we call them intrinsic dislocations since they are
inherent in the driving pulse. Our primary interest in this paper is dislocations produced by the
diffraction in the wavefield; we call these extrinsic dislocations. They occur even when the driving
pulse itself has no zeros, and are what Nye & Berry (1974) had in mind when they coined the
name ‘wavefront dislocation’.

Intrinsic dislocations have not yet been studied. As a simple example, suppose the two-beam
system of §2 is driven by a pulse whose envelope f(¢) has a single zero at ¢ = a. This produces a
single intrinsic dislocation satisfying A7 = 0, {—7 = a,

i.e. trajectory: x =0,

time: = a+7,+(z/c)cosa.

It is interesting that this trajectory along ¥ = 0 is completely forbidden to extrinsic dislocations.

Ficure 9. With a hyperbolic secant pulse shape, in the limit o - 0 a dislocation trajectory collapses on to a c.w.
null. While the length of the trajectory is proportional to o, its distance from the c.w. null is proportional to
o*. The dislocation times run from — oo to + 0. In the degenerate two-beam model the trajectories for different
o fall on top of one another, and always pass through the c.w. null.

AN
c.w. null
4 AN

Equation (45) predicts no extrinsic dislocations (other than c.w. nulls). To understand this let
us consider, anticipating later results, what happens physically as the bandwidth o of the driving
pulse is decreased to zero (figure 9). For small non-zero o and a symmetrical pulse envelope a
typical trajectory surface AB avoids a c.w. null line by a distance proportional to ¢2. For a
hyperbolic secant pulse the dislocation line sweeps out a strip of length AB proportional to o,
the time of arrival of the dislocation passing from — oo to + c0. Thus, as o decreases the trajectory
surface migrates (vertically in figure 9) and simultaneously contracts in length (to A'B’);
finally, as 0 — 0, it condenses on to the c.w. null line. (The two-beam model is degenerate
in that the trajectories with |z| < |z,| always pass through the c.w. nulls.) Suppose then that we
have fixed o and have found the trajectory AB, labelled along its course with the arrival times .
If o is now decreased a typical point P will no longer show a dislocation, because the trajectory
will have shifted, but we could regain the dislocation, at a different time, by moving slightly
perpendicular to the trajectory. Eventually, however, the dislocation will be lost in the far head
or tail of the pulse (¢ = +00), and this will happen before o reaches zero (in figure 9, P would
have reached P’ when AB reached A’B’). Thus, for any point not on a c.w. null line, as o is
decreased the signal will eventually not contain a dislocation. This is why the lowest-order
approximation (45), valid for very small o, does not contain any extrinsic dislocations (other
than the c.w. nulls). To find extrinsic dislocations we have to fix ¢ as non-zero and then seek an
approximation to ¥ (r, ¢) that is good enough to reveal the positions and times of the zeros.

23 Vol. 305. A
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This discussion illuminates another puzzling point. The spatial pattern of ¢(r, w,), the phase
of a(r, w,), near the c.w. null is indicated in figure 9 by the radial equiphase lines, the phase
changing by 27 in one revolution about the null (Nye & Berry 1974; Nye 1981). As w is changed
the null point and the radial pattern move, and it is evident that, for a point 7 near the c.w. null,
the rate of change (0p/0w),.,,, and hence T, can become very large. Since Tj is the pulse delay
time this is a strange conclusion, but it is nevertheless correct. For example, in the two-beam
model it may be verified from first principles that on a dislocation trajectory, for fixed small z,
as o is decreased, first the dislocation disappears into the far head or tail of the pulse as described
above, and then the signal envelope does indeed become a much attenuated replica of the
original pulse envelope but displaced (backwards or forwards) to very large times. The time
displacement can be made indefinitely large by choosing a smaller fixed z, provided o is then
allowed to be sufficiently small. (This means that it is quite possible for the peak of the received
envelope to be observed before the peak of the source envelope has been transmitted. However,
there is no reason to think that causality is violated. To discuss causality one would need a signal
with a sharp onset, but in the present case the small bandwidth, on which the result depends,
severely restricts how fast the source envelope can vary.) Of course, at the c.w. null itself, as
o — 0, the whole signal becomes zero.

3.3. The perturbation series

All our analysis is in the time and frequency domains at fixed r, so we shall usually drop all
explicit r dependences. Defining a new frequency variable W = & —w,, and using the delayed
transfer function defined in (41), our integral representation (40) for the received signal becomes

Y(t) = e (2m)— f * Ap(wy+ W) F(W) e-WEAW (47)

where, as before, ¢t = T+, and T denotes simply an arbitrary local time origin. Expanding
Ap(wy+ W) about W = 0 and integrating term by term gives formally

v() = emint 7[5 Bl rovyemiaw (48)

n=
. 0 7
= enint 3 AR fOD), (49)

where we have used inverse Fourier transforms. Here

" dyp(w)
O™

and f™(¢) = dnf(2)

( —
AT"L,)O = di;

w=w,

Subscript zero will always denote that functions of w are evaluated at = .

We have already argued that, if the system has no ‘singular resonances’, a(r, ) is an entire
function of w, and hence so is 4,(r, w). Therefore, the Taylor expansion of 4,(r, ), as used in
(48), is uniformly convergent in the whole complex w-plane. On the real w-axis | f (w)| is bounded;
hence the expansion of the whole integrand of (48) is uniformly convergent for all real W.
Therefore, integration term by term is justified, and (49) converges.

If, on the other hand, a(r, w) has any poles, the integrand of (48) will have a finite radius of
convergence and (49) will be an asymptotic series, because we are integrating outside the radius
of convergence (Dingle 1973, p. 3). The significance of this is that, typically, the terms of a
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convergent series initially increase in magnitude and then ultimately decrease (converge) to
zero, whereas the terms of an asymptotic series initially converge in magnitude to some minimum
value and then ultimately diverge. (As an excellent introduction to asymptotic series the first
chapter of Dingle (1973) is recommended.) In both cases a truncated series may accurately
represent the infinite series only if it is truncated in the converging region. Therefore we must
truncate a convergent series late enough, but an asymptotic series early enough. Since (49) is not
a power series its behaviour may be more complicated, and it is difficult to check that it is
converging at the point of truncation. We shall assume that it is. Then subsequent analysis is
formally the same whether or not the series ultimately converges or diverges.

The perturbation series in equation (49) expresses the received wavefunction as an oscillatory
factor e~i“o multiplied by a weighted sum of the original pulse envelope fand its derivatives, all
delayed by the time 7. The time 7 is arbitrary: nevertheless equation (49) is an exact formal
representation of the received wavefunction, which from its derivation is independent of 7. This
is possible because 7" has become intricately interwoven into the functional form of the infinite
series, appearing in both the delayed transfer function and the envelope function,

or d»
APy = s fa() eTY , fO) = 32 f (= T)
o

respectively, and also in the oscillatory factor e~14¢-1), (In Appendix A we show explicitly how
these T variations within (49) conspire to cancel out.) The time T cannot affect the value of the
infinite series, but it may affect the rate of convergence of the early terms, and hence the accuracy
of a particular truncation.

For reference, we introduce the bandwidth o explicitly by defining

f(t) = F(at), (50)
so that S®(t) = o"F®™(at), (51)

where F™® denotes the nth derivative of F. This does not turn the perturbation series into a power
series in o, because of the o-dependence remaining in F; but it does make explicit the sense in
which successive derivatives of f become rapidly smaller in the quasimonochromatic limit o — 0.
The F™ facilitate comparison of derivatives of different orders, by virtue of being dimensionless.
For notational simplicity we shall continue to work in terms of f, referring back to (51) when
necessary.

There are two important parameters affecting the rate of convergence of (49): the bandwidth
o of the driving pulse and 7T'(r). They are completely independent, but while o is fixed by the
system we are free to choose T For a particular o, we choose T to maximize the rate of initial
convergence of (49). The smaller is o, the more rapid is this rate.

This raises the obvious question: on what scale must o be small? For the series (49) representing
¥ (2) to converge rapidly, the ratio of successive terms must be small. From (51), this requires that

LA £ (o) A0 Fo (o)
nt 1| AP, f™ (o7) APy || F™ (of)

for all n. The term |4V /AP (| has the dimensions of time and for the two-beam model, taking
T = 7, we find (for example from (90)) that it is proportional to Ar. In general, we expect that
|AGD /AP ,| oc Ary, where AT, is some characteristic time analogous to A7 in the two-beam model.
We may call Ar, the ‘elongation time’ of the pulse, and generally it will depend upon position
(cf. equation (5) for Ar) and w,.

o
Tn+1

<1

23-2
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We expect rapid convergence if oA7r; < 1. This sets the (position- and frequency-dependent)
scale on which the pulse bandwidth o must be small, in order that our subsequent perturbation
formulae be valid. The only relation between ¢ and w, is through the w,-dependence of Ar,:
there is no direct constraint of the form o < w, in this theory, and in fact the carrier frequency w,
plays little role in the analysis. We return to the elongation time A7, in §3.8.

To use (49) in practice we want to truncate it at the smallest possible number of terms. Let us
define ¥y (¢; T') to be the partial sum of (49) up to the Nth derivatives. Then

Y(t) =Pyt T)+ Ry (1 T)

defines the remainder Ry ,(¢; T). The T dependences of ¥ and R, which are crucial, have been
made explicit; the sum ¢ is, of course, independent of 7. For given ¥, to approximate ¥ (¢) by
¥y(t; T) we require the remainder to be as small as possible; therefore we choose 7" to minimize
|Ry.a(t; T)|.

3.4. Minimizing the truncation error

For given r we must expect the optimum value of the local time origin 7 to differ according to
the value of N that is chosen; for given Nlet us denote it by 7). In this section we shall derive the
approximate necessary conditions for |Ry.,(¢; T')| to be a minimum, valid when oAr; <€ 1. They
are independent of ¢ and of the pulse shape, as we would hope, and may be expressed purely in
terms of the ¢ coefficients’ 4$,. Unfortunately the conditions are not sufficient, so that our results
are not completely reliable. Nevertheless, they seem to work well in practice, and our ultimate
justification of the theory appeals to this fact. Note that 7,y can never be determined from the
truncated series ¥y alone.

Denoting temporarily Ry (¢; T') by just R, we require d|R|/0T = 0, 3|R|/0T? > 0 for |R|
to have a local minimum with respect to 7" If we assume regularity in 7, this is a necessary, but
not sufficient, condition for an unconstrained global minimum at finite 7. Denoting a complex
conjugate by an asterisk, we have

O|R|? O|R
o7 - 2RI
_ O(RR*) _ OR*
02| R|? |R| 0|R|\?
and ot ~ 2Bl +2(a_T)
_ O*(RR*) _ 02R* OR [
=372 —2RC(R—6—7:-2‘-)+25-7, .
Then O|R| /0T = 0, 3| R|/0T? > 0 implies
*
Re (R%BT) =0, (52a)
2R * 2
Re (Raa§2)+|g§, > 0. (525)
Our nest task is to differentiate
Rya(t; T) = et 33 Zagp, pouie— 1) (53)
=N+
with respect to 7. First we evaluate
AP, o ?

T = sonardr(®)

Wo
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From (41), without the explicit r dependences,
Ap(w) = a(w)e T so 04, (w) /0T = —iwAp(w).
Differentiating » times with respect to w, using Leibnitz’ formula, and setting & = w, gives
QAT = —i(wy Ay +nAFY). (54)

By differentiating (53), and using (54), the derivative of the exponential cancels the first term in
(54) leaving

Ry, (6; T o I (o S S LR
__IV_JS%__)=C—1W{ ) fr_zl_——-—i_)—!A(T'°l)f(m(f)— » l_lr_t_!Aﬁ.’,’)of(n+l)(f)}’ (55)

n=N+1 n=N+
where again § = ¢— 7. All terms but one now cancel, leaving simply

ORy.. (8 T)

LN
1 = e—loyf I'JW AP, FA(E). (56)

This exact result is astonishing: the 7-derivative of the infinite sum for Ry,,(¢; T) reduces
to a single term, involving the last ‘coefficient’ A%, occurring in ¥y(¢; T'), which does not
appear in Ry ,(¢; T') at all.

Differentiating again and using (54) produces a similar cancellation leading to

PRy (8 T)

(=1
=T = e-iwot( ]\;l) {iNA(II'\’Ial)f(NH)(f) +A$_,,1V,’)0f(N+2)(f)}. (57)

At this stage we must introduce some approximations to get tractable results. First, conditions
(52) involve not only derivatives, but also Ry, (¢; T') itself. The best we can do is to approximate
Ry .1 (t; T') by its first term. This should be valid if ¢ (and hence Ry,,) has rapid initial con-
vergence, that is, if oAr; < 1 and Ty is correctly chosen, unless the first term of Ry,,(¢; T')
happens to be zero or very small. With this approximation, conditions (52) cease to be sufficient
even for a local minimum, although with approximate equality in (524) they remain necessary.
Second, we assume that f(¢)is varying sufficiently slowly that the second term in (57) is negligible,
which, from the discussion at the end of §3.3, will again be true if cAr; < 1. Small errors in the
second derivative should not matter, since we only constrain the sign of 32| R|/0T?, not its value.

Summarizing our results for the truncation error, using once again { = {— 7, we have

Ry (t; T) ~ e-iwofiNt1 APV FAHD(F) (5684a)
N+t € (N+1)! :

———a R ; T ~1wt {N+1 i__.__.A(TAR’ W+D(F 8b

T N+1(t3 ) = ¢ 1 Y f (t): (5 )
02 iyt (N+1 ANV (N+Y)(F

aTzRNH(I,‘; T) ~ e-lootiN+ {—(N; 1)!>f( (7). (58¢)

The formal term-by-term cancellation in (55) appears to be independent of the ultimate
convergence of the infinite series. Therefore, as long as y is truncated in its convergent region,
equations (58) should hold even if (49) is asymptotic.


http://rsta.royalsocietypublishing.org/

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

p
s

PHILOSOPHICAL
TRANSACTIONS

/ y

SOCIETY

—
>~
o[—<
~ =
k= O
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org
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One essential outcome of the approximations leading to (58) is that all three equations in (58)
have identical time dependences, so that on inserting (58) into (52) the time dependences cancel
out, and the conditions for minimal truncation error reduce to

Im (AP APF) = 0 } (59a)

NRe (AXED APTI*) < (N+1) | A2, (595)

These conditions, which are independent of ¢ and valid for A7, < 1, apply even iff(¢) is complex.
For given N they determine 7}, (if they have a solution) in terms of the transfer function a(w) and
the carrier frequency , only. Conditions (59) appear to be satisfied trivially by AZ§? = 0.
However, this makes the approximation (584) of Ry, by its first term invalid, so this solution is
invalid.

To proceed, we must separate real and imaginary parts. This works out most conveniently if
we write the transfer function in amplitude-phase representation as

a(r,0) = M(r,0) e?o (M > 0). (60)

This is valid everywhere except where a(r, ) = 0 (because then g is indeterminate), so M = 0
is excluded. To handle these c.w. nulls we must use the real-imaginary representation

a(r,0) = p(r,0) +ig(r,0). (61)

This form is also more appropriate for numerical computations. We shall develop the theory in
(M, @)-representation, and then convert to (p, ¢)-representation as necessary, using the formulae
in Appendix B.

In amplitude-phase representation, from (41),

Ap(r,0) = M(r, w) et?: 00T = M(r, w) el7®9), (62)

where, as in (43), ¥ = ¢ —wT. We shall use primes instead of superscripts to denote differenti-
ation, drop explicit dependences, and use subscript zero as before to denote evaluation at w = w,.
Then, noting that y™ = ¢® for n > 2, we have, for later use in conditions (59),

Ao = Myeir,
Ap,o = (My+iMyy;) el
Ap,o = {(Ms—Myy?) +i(2M 74+ Mygp)} e'ro,
A7, = [(Mg —3M e — 3Mygoys) +i{8MGys +3M g+ My(py —74?)}] €.

(63)

It may be shown, with the aid of equations (54), that conditions (59) for a local minimum of
|Ry+1(#; T)| are in fact exactly the conditions for a local minimum of | 49§V |. The terms Ry (£; T)
and A3V are approximately related by (58a), which approximates Ry.,(¢; T') by its first term.
Therefore we see that, when this approximation is valid, it is also valid to ignore the 7-dependence
of f@+(t— T, the last factor in (584). (This follows from (584) alone only under the additional
assumption that o < w,.) Since, from (63), |[A@$V|? is a polynomial (of degree 2N +2) in v,
and hence in 7" (because y, = @y — 7)), its global minimum is guaranteed to be one of the local
minima given by (59). It can be shown that the prescriptions given below do give the global
minimum of |[4%¢?|, and hence, within our approximations, that of [Ry.(¢; 7).
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3.5. Solution by successive approximation

Having completed the mathematical groundwork, let us return to our main problem, to use
equation (49), namely

Y(t) = e—iwdﬂg{):ﬁ A, fo ), (49)

to predict the behaviour of a pulse of small bandwidth. Conditions (59) specify T, and initially
we shall use representation (63) for 4%, We proceed by truncating (49) at n = N for succes-
sively higher values of N until we produce a satisfactory formulation for the phenomenon we
seek. At each new value of N the prescription Ty, for 7" changes (slightly).

3.5.1. Zero order: N = 0
From equation (49):
Y(t) = Pyt T) = eriontdy, o f () = Myetwood ft—T). (64)

Condition (594) for Tj is Im (47 (A% o) = 0. With the use of (63) this becomes M3y, = 0.
Since M, = 0 is excluded, we must have (using the definition (43) of y in terms of ¢)

Vo=g—Ty=0. (65)

For N = 0, the first term on the right of (57) is identically zero; so the approximation (58¢) must
be replaced by the second term in (57), involving f™+2(f). For oAr, < 1 this term is negligible
compared with terms involving f™+D(f), from (51), so condition (525), from which (595) is
derived, is trivially satisfied. Therefore 7, = g; is optimal, and the zero-order approximation is

Y (r,8) m M(r, 0p) t70eo=eoll f{t — g’ (1, wg)}. (66)

This achieves one of our stated aims by completely verifying approximation (45) and finding
Tj(r). The time delay of the carrier is given by ¢ (7, w,) /@y, while the time delay of the envelope
is given by ¢'(r, w,). The zero-order approximation gives only a crude description of a pulsed
wavefield, and its main use is to provide a generalization of group velocity. It describes roughly
the propagation of gross features of the driving pulse, such as its peaks. However, to study the
more subtle dislocation lines we must proceed to higher order. (Zero order gives no extrinsic
dislocations, and degenerate intrinsic dislocation surfaces; both become lines in first order.)

3.5.2. Firstorder: N =1
From equation (49):

Y1) & Pyt T) = el {dy, o flE) +1d7,0 f'(E)}. (67)

General analysis becomes rather involved, so we shall from now on specifically seek extrinsic
dislocations and shall assume f to be real. The point r is on a dislocation trajectory if (r,¢) = 0
for some real ¢. Consequently we are on a dislocation trajectory to order N if ¥y (¢t; T) = 0 has
real solutions for ¢. To first order, equating (67) to zero, inserting representations (63) and
separating real and imaginary parts gives

My {f(&) =70 f' (D)} = 0,}

My f0) =0, (%)
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Since we are excluding M, = 0, and generically f and f’ do not have simultaneous zeros, (68)
implies
FO=7f (D) = 0) (690)
M, =0.] (695)

Equation (694) is independent of time, and represents one real equation in r; so its solution is a
surface in three-dimensional space. This is the dislocation trajectory; for any point on it (69a)
gives the dislocation time ¢ (via ¢ = T +1, once we have prescribed 7).

When f{t) is at most linear in ¢ equations (69) are exact, and independent of T, since then all the
derivatives of fhigher than f” in (49) vanish. But, as we shall see, (69) can still be a good approxi-
mation, provided 7 is correctly specified, for more general pulses.

From now on we consider solutions only on the surfaces in space on which M = 0. Condition
(59a) for 7, is

Im (A7 4 A7) = 0.
If we use (63), and set M = 0, this becomes
— Myyo(Mo—Myve?) = 0. (70)

The condition obtained in the N = 0 approximation, y, = 0, is still a solution, but then the
dislocation equation (69a) reduces to f(f) = 0, which only gives intrinsic dislocations. To find
extrinsic dislocations we must take

Mo—M,ye =0 which implies vy = +./(Mo/M,). (71)

This gives real values of

Ty =96—75 = o ¥ (Mo/My) (72)
only when Mg > 0, thereby restricting the dislocation trajectories to frequency minima or ‘anti-
resonances’ of the c.w. amplitude. Condition (596) for 7 is

Re (A7,04%,0) < 2|47,o[>
If we use (63) and set M = 0, this becomes
My(Mg—Myye?) < 2(Myyo)?

which is trivially satisfied by (71). We appear to have two alternative optimal prescriptions (72)
for T; (whose mean exactly equals the zero-order prescription 7y = ¢).
However, this prescription is suspect because, when M = 0 and Mg — M,y,? = 0, from (63)

” . "
T,0 = lMo(po ei‘)/o_

It turns out that for the two-beam model ¢j is identically zero when M = 0, and for a more
realistic model such as an acoustic piston radiator (Wright 1977, Wright & Berry in preparation)
@o is certainly very small when A = 0. (This is one of a number of apparent coincidences that
play an important role in the present theory, and are under investigation.) Therefore A7 4 is
zero or very small, and approximation (584) is invalid. To apply first-order theory consistently
to extrinsic dislocations we would have to approximate R,(¢; T') by its first two terms. This would
involve Ay 4, and also the time ¢ and envelope f(¢). Rather than do this, it is better to proceed to
second-order perturbation theory, which involves A7 , but not the time or envelope. This will
confirm one of the prescriptions (72).
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3.5.3. Second order: N = 2
From equation (49)
Y(t) = Wy(t; T) = et {Ay o f(F) +1d1,o f' () — 347,0.f"(D)}-

Equating %,(t; T) to zero, inserting representations (63) and separating real and imaginary
parts, gives

My{f () = 7o S (D} —H(Mo— My ye?) f7(2) = 0,) (73a)

Mif'(0) = H2My v+ Myt () = 0 ) (738)

(since Yo = ¢g). We shall assume that ¢y = 0 when Mg = 0. Then our N = 1 equations, namely
My=0 with g¢g=0, (744)

JB=nSf'@) =0, (74)

My— M,y =0, (74¢)

satisfy equations (73) exactly. (If, in fact, ¢¢ # 0, there would be a small shift in the dislocation
trajectories and times, as one would expect in the next approximation; and the time and space
dependences would be coupled, making the full second-order solution much more complicated.
Since our purpose is mainly to confirm the first-order solution, we shall take g = 0.)
Condition (59a) for T, is
Im (A, A7) = 0.

This is satisfied by equations (74), since they make A7 , vanish, as we have already discussed.
Condition (595) for T, is

2Re (47,047) < 8|47, o[
Since A7,, = 0, this reduces, with the use of (63) and (74), to

{(BMGy+My(90 —76)} Myvs < 0.

Replacing M, yq? by Mg, from (74c¢), gives

M+ MEyopy < O.

y

A necessary, but not sufficient, condition for this to be satisfied is Yo, < 0, that is

1

sgn (vo) = —sgn (¢o)-
This equation enables us to discriminate between the two alternative signs in (71). Generically
Ap,o # 0; s0 our approximation of Ry(¢; T') by its first term should be valid (unlike the situation
to first order).
To summarize, we have confirmed one of the first-order solutions, that which may persist

with only small shifts to second order. The trajectory is that part of the surface & given by:
My=0, Mg>0 (trajectory), (75a)
on which the time ¢ is real, where

t= T'I"'fn T; = ‘P(’)—}’é,

Yo = —sgn (¢0) { (Mo/My), ¢ (time) (758)
and { satisfies S@&) =y f'(@) = 0.
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This prescription for 7; gives minimal truncation error. (We can now see that the alternative
sign in (72) actually gives maximal truncation error.) We shall take equations (75) as our first-
order perturbation formulae for extrinsic dislocations. Although we had to work to second order to
fix the sign of g, (75) is strictly only a first-order solution of (r,t) = 0, unless it happens that
®o = 0 when Mg = 0, when fortuitously (75) may become exact to second order. Generally, @y
will produce a small shift in formulae (75), embodied in equations (73).

The only ultimate verification of these formulae comes from comparison with exact results for
suitable models, as we shall discuss later.

3.6. The dislocation trajectories

Where the bandwidth o is sufficiently small that oA7,(r, w,) < 1, in the first-order approxi-
mation extrinsic dislocations travel along the surfaces & in space on which M'(r,w,) = 0,
M(r,wy) > 0: that is, surfaces in the continuous wave diffraction pattern for frequency w,
where the amplitude is a minimum with respect to changes in frequency. This simple and un-
expected conclusion constitutes one of the main results of this paper.

In the next approximation there will be a correction to this expression for the dislocation
trajectories, depending on o. However, it is important to remark that, provided the original
pulse envelope is symmetrical in time, the correction is of at least second order in ¢. The reason
is that if, with a symmetrical pulse, the sign of o is changed, the physical system remains un-
altered. Therefore, the exact expression for the trajectories must be even in o.. This means that
the error in taking M = 0 for the trajectories is of order ¢ or higher. The expression for the time
must also be even in 0.

Generically, Mg = 0 defines lines in the surface M, = 0 where the minima change into
maxima, beyond which our perturbation solution cannot extend. We have found no valid
perturbation solutions for extrinsic dislocations (those not inherent in the driving pulse) where
Mg < 0, but we have not proved that there are none. We conjecture that for small ¢ dislocations
are only produced by diffraction at frequency minima of M. However, as the pulse length
decreases, dislocations might appear where not predicted, before they cease to appear approxi-
mately where they are predicted !

The dislocation line may not actually reach all parts of the surface <. This depends on the
pulse shape, through (755), which gives

SO ) = —sgn (o) Y (M5/My). (76)

Physically f(¢) = 0 as t— + c0; so f(#) has at least one stationary point and | f/f’| is unbounded
above. Of course | f/f’| is always bounded below by zero, but for some pulse shapes it may have
a lower bound B > 0. Then the extent of the trajectory is limited by

Mg/M, > B2
For example, our most realistic model pulse shape
Sf(t) = F(ot) = sechot, (77)
gives fIf = —o lcothat,
and hence B = o~ Therefore the trajectory is restricted to

My/My > 1/
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The Lorentzian envelope also gives B > 0, but for the Gaussian B = 0 and the full extent of
& is used.

Figure 104 shows in an Argand diagram how the complex delayed transfer function 4,(r, )
varies with frequency o at a particular point r (not a c.w. null) on &. For a point r on & close
to a c.w. null for w = w, the representative point passes close to the origin, and M(r,w) is a
minimum at » = w,. For a point r exactly at a c.w. null the locus in figure 102 must pass through
the origin at @ = w,. The minimum in M then becomes a corner, with discontinuous slope and
infinite curvature (figure 105) and M’ passes discontinuously through zero at @ = @,. Therefore
the surfaces & contain, in this limiting sense, the lines M, = 0. In fact, differentiating M con-
tinues the lines M, = 0 into surfaces M = 0, by replacing the two real equations implicit in
M, = 0 by just one real equation My = 0.

(a) [
M(rw) (b
A p(w)

Ficure 10. (2) Argand diagram for the delayed transfer function A;(r, ) as w varies for a fixed point * on .
The surface Fis defined by M; = 0, M > 0 and, to first order, contains the dislocation trajectory. (5) The
modulus M(r, ) of Ap(r, ) as a function of w: curve 1 is for a general point r on &; curve 2 is for r at
a c.w. null for © = w,.

The fact that the lines on which M, = 0 lie in the surfaces & which give the approximate
trajectories produces a problem, because the amplitude-phase representation (60) for the
transfer function breaks down when M = 0, since then M and ¢ are singular. However, we
show in Appendix B that the spatial behaviour of the frequency derivatives of M and ¢ may be
‘regularized’ by multiplying by appropriate powers of M. These regularized quantities may
then be interpolated through a c.w. null in space. In general, we must evaluate third derivatives
of the transfer function solely to fix the sign of the square root in (754). However, the analysis
in Appendix C shows that for trajectories that pass (approximately) through c.w. nulls it is
sufficient to choose the sign of the square root so that 7} is regular through the nulls, thus saving
some computation.

3.7. The meanings of Ty(r) and Ty(r)

Let us now review the meanings of Ty(r) and T(r). The time Ty(r) is the optimum local time
origin when we retain only the zero-order term in the perturbation series. It is given by
Ty(r) = @g(r) and has the physical significance of the pulse delay time for such small bandwidth
that the pulse shape is undistorted. It is singular at a c.w. null (§3.2).

The time T;(r) is the optimum local time origin when we retain the first two terms in the series,
and we have only defined it at points on the surfaces &, on which M§ = 0, Mg > 0. Itis regular
within this domain, and in particular it is regular at a c.w. null (Appendix C). When the pulse
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shape is distorted, as it must be to contain a dislocation (figure 24), the ‘delay time of the pulse’
can no longer be uniquely specified. One way of dealing with this problem is to define a reference
pulse, namely the original pulse envelope undistorted and delayed by 7;(r), and to use this as
astandard against which to compare the actual distorted pulse envelope. We can also, as a matter
of convenience, use ¢ = T;(r) as a reference time from which to measure the position of the
dislocation. (Note that Ty(r) would not serve this purpose well because it becomes indefinitely
large near a c.w. null.) Accordingly we call T (r) the dislocation reference time.

In general, of course, the carrier wave moves relative to the reference pulse and we may
recall that glide is defined (Nye 1981) as motion of the dislocation relative to the carrier wave
rather than relative to the pulse. Itis interesting that in the two-beam model (where the medium
is non-dispersive) 7, which is related to the delay of the carrier wave, rather than the delay of the
pulse, appears as the natural time origin in the exact analysis.

The first-order perturbation theory gives an interesting result for the signal received at a c.w.

null. If we write (76) as o ,
| /() [F(2)] = N (My/ M),
then regularize and insert expressions (B 2) and (B 64) from Appendix B, we find that
|F @@ ~ (2 +)/(bg —at')] -0,

as M2 = p?+ ¢*—> 0. We deduce that, in the first-order approximation, f'(f) = 0 at a c.w. null.
The reference pulse envelope is f(t — 7;) = f(f). Therefore our result means that, for a receiver

at a c.w. null, the dislocation occurs in the signal at a time when the slope of the reference pulse

envelope is zero. For example, if f(#) has a single peak at ¢ = 0, as in §2, so that f'(0) = 0, and

has no other stationary points, it follows from f’(f) = 0 that f = 0; hence ¢t = 7T;. At a c.w. null,

the dislocation in the actual signal appears simultaneously with the peak of the reference pulse.
We now look more closely at the dislocation behaviour near a c.w. null.

3.8. Behaviour near a continuous-wave null

We have seen that the approximate dislocation trajectories are parts of the surfaces & and that
these surfaces contain the c.w. null lines for @ = w,. Do the exact trajectories also contain the
c.w. nulllines? They do so in the two-beam model, but we shall see in this section that, in general,
the c.w. null lines lie near but not on the exact trajectory surfaces, intersecting them in isolated
points. By restricting attention to the immediate neighbourhood of a c.w. null we can express the
dislocation conditions as power series in the bandwidth o and this enables us to proceed in a
more rigorous fashion than before.

We use a real-imaginary representation for a(r, ),

a(r,w) = P {P(r,0) +iQ(r, )}, (78)

where f, is an arbitrary phase to be chosen for convenience. Take as origin r = (x,7,z) = 0 a
point O on a c.w. null line for = w,. Putting W = & — v, as before, the local approximation
for P and @ in powers of , y, z, W may be written

P=ax+ay+azz+a,W+asxW+agyW+a,zW+a; W2+ ,} (79a)

Q=0bx+byy+bsz+b,WH+bW2+.., (79b)
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where the a, and b, are constants. Out of the 16 terms quadratic in x, y, z, W we have explicitly
written only five; the rest are to be understood. For r = 0 the point in an Argand diagram repre-
senting P +1Q) passes through the origin of the diagram as  passes through w,. We choose £,
so that the locus in fact traverses the origin vertically. Then, since

P=aWtaW2+..., Q=5bW+bW?+..,
we have g, = 0. A

B =0 M=o :

Y | \

N7

la,x]

THE ROYAL A
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\ Ficure 11 Ficure 12

Ficure 11. (a) The c.w. nullline for @ = w, is the intersection of the surfaces P, = 0 and @, = 0. At O, anarbitrary
point on this line, P, = 0 is tangential to the null surface M = 0, and @, = 0 is tangential to the surface
M; = 0. The axes are chosen so that a, = a3 = by = 0. (b) For small o, the dislocation trajectory (solid
line) is locally a plane parallel to @, = 0 and makes intercepts on the axes proportional to o2

Ficure 12. Curve 1 shows M(w) for a general point on the trajectory in figure 115. M(w) has a minimum of

height |a, x| which is displaced from w, by a frequency difference proportional to 0. Curve 2 shows the same
but for point J in figure 115; the height of the minimum is zero.
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As before we shall use the subscript zero to denote quantities evaluated at W = 0. The surface
P, = 0has aspecial meaning. As the continuous-wave frequency is changed the null line will trace
outa ‘null surface’ in (¥, y, z) which we can label M = 0 (figure 114). For a given ¥/ the null line
is the intersection of the two surfaces P = 0 and @ = 0. Each of these equations describes, in
general, a family of surfaces in (x, y, z), parametrized by I; in our case they are, locally,

Ay x+ayy +azz = 0,1 (804a)
byx+byy+byz+b, W =0, | (805)

with W appearing only in @ = 0. Hence, projecting out W, the null surface M = 0 is represented
locally simply by the first equation, which is Fy = 0. The surface F, = 0 is therefore tangential at

p
[\ \

— the origin to the null surface M = 0 (figure 114).
; > Likewise the surface @, = 0 has a special meaning. In general, for given (r, W),
2 = M2 = P2iQr,
e
Q) Differentiating with respect to W and putting W = 0 we have
I ’ ’ ’
[—(93 My My = B Po+ Q, Qp.

Equations (794, b) with a, = 0 show that F, P is O(r?) while Q,Qq is O(r). Hence, to first order
MyMy = Q,Qs Now consider a point, not the origin, where Mg = 0. Then, to first order
Q0 Qo = 0. But Qg # 0 near the origin (to first order it equals 4,). Hence @, = 0. This shows
that the surface M = 0 is tangential to the surface @, = 0 at the origin (figure 11a).

Now choose Oz to be tangential to the c.w. null line and Ox to be perpendicular to the surface
P, = 0, thereby making a, = a; = b3 = 0.
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We must now find the condition for a dislocation. In the approach of this section we do not
need to introduce the local time origin 77(r) because we can ensure sufficiently rapid con-
vergence of the perturbation series by choosing o and r small enough; so we simply use equation
(49) with 7' = 0 and 4,(r, w) = a(r,w); that is, for given r,

y(t) = e“‘”“"éoi%!)“ a§® f (1) (81)

If the point r lies on a dislocation trajectory, y(t) = 0 for some real ¢ Using this condition,
dividing by ei%o—=t) and separating real and imaginary parts (taking f as real) we have

Bof(t) = Qo f () =3P f" () + .. = 0,) (824)
Quft) +Ps f'(H) —3Qef"(t) +... = 0.) (820)

Now introduce the bandwidth o explicitly as in (50) and use the expressions (79) (with
ay =ay = by =qa, = 0):

(ayx+...) F(ot) —o(by+...) F'(0t) —0%(ag+...) F"(ot) + ... = 0,1 (83a)

(byx+byy +...) F(0t) + 0 (agx +agy + a2 +...) F'(08) — 02(bg +...) F"(ct) +... = 0,]  (83b)

where dots denote higher-order terms in #, y, z and . With small but non-zero o these two
simultaneous equations in x, y, z, ¢ should determine, by elimination of ¢, a surface in (¥, y, 2)
which is the trajectory, and also an expression for ¢ as a function of position on the trajectory.

In the two-beam model o is ‘small’ when it is much less than |A7|~%, or equivalently
2|A7| < 201; that is, when the extra spreading of the received pulse is much less than the original
pulse length 20-1. The dimensionless small quantity is |oA7|. In the general case the quantity
analogous to A7 is A7, the elongation time introduced in §3.3, which measures the spread of
the time delays of the constituent pulses that make up the received pulse, and which is governed
by the transfer function a(r, ). We define ¢ = |oA7y| and, thinking of A7, as locally constant,
we call € the (dimensionless) delay bandwidth of our pulse.

We anticipate from the principle stated at the beginning of § 3.6 that, if the trajectory does not
pass through O, it will miss it by a distance proportional to o2, at any rate for a symmetric pulse.
Therefore we look for a solution in the small region around O where x, y, z (suitably scaled to be
dimensionless) are O(e?).

On the part of the trajectory within the small region near O we guess (and verify later) that
¢ will be such that ot is O(e). We assume F’'(0) = 0, which is the case if F'is peaked at zero, and
since ot is small, we can then write

F(at) = F(0) + O(e?),
F'(at) = at F"(0) + 0(e?),
F"(ot) = F"(0) + 0t F"(0) + O(e?).

Knowing now the orders, in terms of ¢, of all the terms in equations (83) we keep only the lowest
order, which is €%, that is terms in 62, or x, y, z; thus

a,xF(0) —o2b,t F"(0) — 02as F"(0) = 0,1 (84a)
(byx+byy) F(0) — a2b F*(0) = 0.] (84)
It is important to remark that the term in (845) involving ¢ has dropped out, being O(€3).
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Equation (84a4) then gives for the dislocation time

_sy @ F(O)
A ST L (R (85)
and (84) gives for the trajectory
byx+byy = szS{?'—(—O-)' (86)

£(0)

The factor F”(0)/F(0) = —1 for all three of our illustrative pulse envelopes (Gaussian, hyper-
bolic secant, Lorentzian).

Equation (86) defines a plane, locally parallel to @, = 0 and therefore parallel to M, = 0, but
making intercepts on the axes of length O(e?) (figure 115). This justifies the original guess that a
solution exists at a distance from O of order €2. Then (85) shows that, in this region, o is indeed
of order ¢, as anticipated. Equation (85) shows that the time of the dislocation is —ay/5, at point
J, where x = 0, and varies linearly with x along the trajectory. In terms of derivatives with
respect to frequency, taken at O not J, this time is — P/ Q.

This result is compatible with our general perturbation theory. In first-order theory the
approximate dislocation trajectory (part of the surface M = 0) passes through O and not
through J. The best we can do in first-order theory is to find the time at which the dislocation
passes through the c.w. null at O. The analysis in §3.7 shows that for a peaked pulse this time is
t=T,.

The quantities p and ¢ of the general theory are related to P and @ of the present local theory by

p+ig = elbo (P +iQ).
With this relation equation (C 4) of Appendix C gives, at a c.w. null,

_ 1pid—aabh _ 1P4Q—QiPs
TR pagy 2 PRAQy

However, we have chosen f, so that Py = 0 at the origin, which is the c.w. null. Therefore

t=T, = —4P}/ Q.

This shows that the time from the perturbation theory at which the dislocation passes through
the null is identical with the time at which the dislocation passes (more accurately) through J
in the local theory.

It is of interest to note the local behaviour of M; we have

M? =P+ Q% = aix?+ (byx + byy + by, W2, (87)
and at a point on the trajectory, by (86) with F"(0)/F(0) = —1,
M2 = a3x®+ (b W — o%,)2.

For given x, M(W) has a minimum of |a, x| at W = 02b4/b, (figure 12), and at x = 0, that is J
in figure 115, the height of the minimum is zero. As a check of consistency note that J lies on the
locus M = 0, the surface swept out by the c.w. null as W is changed; thus J is on the c.w. null
line for frequency w = w,+ 02bg/b,.

For a general choice of O on the c.w. null line, b4 in (86) will not be zero, and so the trajectory
will not pass through O. But there is, in general, a surface in space on which b3 = 0, and very
near where the c.w. null line cuts this surface there will be special points where the trajectory
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370 F.J.WRIGHT AND J. F. NYE

intersects the null line. To examine these special points in detail one would need to look at
higher-order terms.

The three-dimensional picture is therefore as follows. For small bandwidth, the dislocation
trajectory surfaces are very close to the surfaces My = 0, Mg > 0, which contain the c.w. null
lines. However, the trajectories themselves do not contain the c.w. null lines; they intersect them
in isolated points.

We have now justified the assertion made in connection with figure 9 that, for a hyperbolic
secant pulse envelope, the distance of the trajectory from the c.w. null is proportional to o2 as
o — 0. The other assertion, that the length of the trajectory becomes proportional to o as o —>0
is justified as follows.

In first-order perturbation theory the ends of the trajectory (where ¢ = + o) are given by the
condition derived in §3.6, which may be written

M,/ Mg = a2 (88)
From (87) the behaviour of M on M, = 0 (whose equation is b, %+ b,y = 0: see figure 115) for
small x and W is given by M2 = @2 4 Bwe.

Differentiating twice with respect to W and putting M = 0 we have M, Mg = b3, and hence
M,/ My = M2/b3 = a3x?/b}. Combining this with (88) shows that |x| for the end points of the
trajectory, and thus also the length of the trajectory, are proportional to o.

4. APPLICATIONS

We now apply the result of the perturbation theory of §3 to three examples.

4.1. The cusp diffraction pattern

As the wavelength is reduced a diffraction pattern approaches the intensity distribution given
by a simple ray theory; for light the theory is geometrical optics. The envelope of a family of rays
is a caustic surface, and this may be thought of as the most primitive type of focusing. The next
most primitive type of focusing results in a crease in a caustic surface, called a cusp line, and the
diffraction pattern we now describe is that associated with this cusp line. It is the second in a
hierarchy of diffraction patterns (Berry 1976) which follows the list of Thom’s (1972) and
Arnol’d’s (1975) elementary catastrophes.

In the general case, if all we know is the c.w. diffraction pattern at frequency o, it is obviously
impossible in principle to determine the surfaces Mg = 0, simply because a derivative with
respect to frequency is involved. On the other hand, diffraction patterns such as this one tend to
vary with frequency in a highly systematic way (changing in size anisotropically); so in practice
it may indeed be possible to infer the approximate position of the surfaces My = 0 from the
pattern at w, given some form of additional information, such as the scaling law used below.

With the z-axis taken along the cusped edge, the modulus M(x,y; w) of the complex cusp
‘diffraction catastrophe’, which is essentially two-dimensional (figure 13), is given by

M(x,y; 0) cc i M(X,Y),

where X = wix, ¥ = oly and #(X,Y) is a function first computed by Pearcey (1946). We
assume here that the conditions are such that the position of the caustic itself is unaffected by
change of frequency. The frequency dependence of the diffraction pattern is then described
completely by the various powers of w that appear in the above scalings.
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A short calculation shows that the condition 0M/0w = 0 is equivalent to

My 2x°l s 3yt

ax T3 =0 (89)

It is convenient to work in (X, Y) space. Then, by numerically differentiating the values of
M (X,Y) already computed (Appendix C of Berry et al. 1979) we can easily plot the solutions of
(89), as drawn in figure 13. (The numerical differentiation becomes unstable where #(X, Y) is
slowly varying but this could be avoided by differentiating M (or .#) analytically and then

Ficure 13. Amplitude contours of the cusp diffraction catastrophe. The loci of frequency minima & (thick solid
lines) link the c.w. nulls (filled circles) and contain the approximate pulse dislocation trajectories for small
bandwidth. The loci of frequency maxima (thick dashed lines) approximately link the spatial maxima.
The cusp caustic is shown as a dot—dash line.

evaluating it numerically.) The solutions form two classes. Those shown by full lines link up all
the c.w. null points by running up the valleys and over the saddles; these are the frequency
minima. Those shown by dashed lines link up all the continuous wave maxima, and run down
the ridges and over the saddles not used by the other family of curves; these are the frequency
maxima. The lines do not necessarily pass exactly through the saddles and the maxima, but they
are nearly always very close. It was a surprise to find the very close correspondence between the
lines where M is a minimum with respect to frequency and the valleys in the M landscape, that

24 Vol. 3o5. A
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is, the landscape represented by M as a function of position, for fixed frequency. The corres-
pondence arises because the main effect of a frequency change is to move the valleys sideways
without much change in the height of their bottoms.

The perturbation theory predicts that, for a pulse of small bandwidth, the dislocation tra-
Jjectories will be close to these valley lines. Experiments using ultrasonic waves (Humphrey &
Nye to be published) show agreement with the prediction, but the directional characteristics of
the receiver, which modify both the continuous wave diffraction pattern and the dislocation
trajectories, must be taken into account in making a close comparison.

4.2, The two-beam model

The two-beam model of § 2 provides an exactly soluble problem against which to test realistic-
ally the accuracy of the perturbation formulae for the dislocation trajectories and times (and
also to test the general numerical implementation described in Appendix D, although the general
method was not used to obtain the results presented here).

First we find the transfer function. Write equation (2) in terms of the variable

2y(x) = zy (%, — %) /2y
¥(x,2,8) = 321 {(z2+2) Yo (1= 71) + (22— 2) Yo (t = 72)};
then, with the help of (42), find ¥ (r, w); hence, using (8), the transfer function is

a(x,z,0) = Mel? = (z,/z,) €17 (cos WAT +1 (z/z,) sin wWAT). (90)

Derivatives of M and ¢ may be evaluated by applying the formulae in Appendix B to (90),
taking p = (zy/z,) coswAT, ¢ = (z/z,) sinwAr and adding 7 to the resulting value of ¢. We

notice that
29" —qp" = 0. (91)

In this sense the two-beam model is degenerate. The first term in the expression for Mip”,
(B 6b), is identically zero, and consequently M§g; = 0 when My M§ = 0. Then, as remarked at
the end of § 3.5, the result (75), which in general is correct to first order, satisfies ¥ = 0 to second
order, (73), as well (although T; is not necessarily optimal to second order).

In fact the prediction of (75a) that the trajectories satisfy Mg = 0, M > 0 is not only correct
to second order, but is exact. This can be seen analytically, or quite simply from the following
physical argument. Consider the sources S,, S, in figure 1 linearly modulated in space, as
described, and emitting continuous waves of frequency @ = w, to produce an interference
pattern. At a fixed point on one of the dashed lines in figure 1 (but not on the horizontal line
through C) we have unequal amplitudes but opposite phases, giving partial destructive inter-
ference. As w is changed the amplitudes at this point are fixed but the relative phase changes.
Clearly, then, the modulus of the resultant will be a minimum at w = w,. If the fixed point
considered were one of the nulls ...Nj, N7, N;, N,... the minimum of the modulus would be
zero (as in figure 104). We already know that the dislocation trajectories are parts of the broken
lines; this proves that the broken lines are exactly the surfaces &, where M{ = 0, M > 0.

A further question (in view of §4.1) is: do the trajectories follow the valleys in the landscape of
the continuous wave amplitude? Figure 144 shows contours of c.w. amplitude at the pulse centre
frequency for part of the field of figure 1. The c.w. amplitude and the dislocation trajectories are
symmetric in z, so we only consider z > 0. The vertical #lines (full lines) appear to lie along the
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Ficure 14. The two-beam model (region shown boxed in figure 1). () Amplitude contours showing the ‘null
normals’ (dashed lines) and the dislocation trajectories (thick solid lines). The contour spacing is halved for
z < z,. N; indicates a c.w. null (black dot), R a ridge, S a saddle and (S) an asymptotic saddle, from which
the line of steepest descent is shown as a dotted line. (b) Accuracy of the perturbation theory. The solid
curves are plotted from equation (93) for the perturbation theory; the dashed curves from equation (94)
for the exact theory. The pairs of curves are labelled on the left by their values of oAt. (¢) Relation of the
carrier reference time 7 to the dislocation reference time T, for the same set of A7 values (shown at the top)
as used in ().

24-2
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valley bottoms of the c.w. amplitude, at least far from the null normals CK, CQ ,. But there is a
problem of definition in the term ‘valley bottom’, just as there is for any landscape. We shall
adopt the definition ‘line of steepest descent from a saddle point’. There are two sets of saddle
points of the amplitude, both quite hard to recognize: one set lies along the x-axis, between (but
not midway between) the nulls, each one being highly compressed in the x-direction; the other
set is a row of degenerate saddle points at infinity on the & lines with each one infinitely com-
pressed in the x-direction. The lines of steepest descent from the first set run along the x-axis and
do not correspond to any dislocation trajectories. The dotted lines show the lines of steepest
descent from the second degenerate set, and it will be seen that they do roughly follow the & lines.
(But note that as the wave angle a is changed the pattern becomes more or less elongated in the
z-direction, and the lines of steepest descent change their relative positions.)

Since the valleys clearly run approximately parallel to z we could try the alternative definition
‘loci of points where the amplitude is a minimum with respect to x at fixed z’. The & lines
passing through c.w. nulls lie exactly along such valley bottoms, but the other & lines do not.
It is also interesting to see that the & lines through the c.w. nulls end on horizontal inflexions of
the amplitude contours.

We now consider the dislocation times. From (7) and (17) the trajectories are given by

po=0 for |z| <|z,|] and ¢, =0 for |z]| > |z,
where the subscript zero indicates, as usual, evaluation at ® = w,. In both cases, the formulae of
Appendix B show that Mg, is negative on the trajectories, so (756) leads to
T, =7+A7/{—(A7/) (134 (92)

for the dislocation reference time, where

2z i |2 <z

€= .

zo/z if |z] > |z
We recall that z = + z, represents the end points of each vertical dashed line in figure 1; thus,
for the trajectories that contain the c.w. nulls, { is a dimensionless measure of the distance from

the null. At the c.w. nulls 77 has the finite limit 7; = 7, where z = 0 and hence { = 0.
If we choose the hyperbolic secant pulse shape (77), formula (755) gives for the dislocation
time
A7 AT(1-¢2) 1 { 4 }
t=7T+— —z ;artanh AT =Tl (93)
with the restriction |{(1 —¢?)~#| < |oAr|. This is to be compared with the exact formula given
by (23) and (25), with (10), namely

_ 1 ¢
t= 'r—-;_artanh (m) (¢ < |tanhoAt]). (94)

Let us first consider the régime || € |¢A7| < 1, which is essentially the same as that treated
for the general case in §3.8. Here both (93) and (94) reduce to the same approximate form,

t x T—{/o?AT. (95)
Physically this means that the perturbation theory gives the correct result if the difference
between the time delays of the two pulses, 2|A7|, is much less than the pulse length, 207,

and if the point examined is either very near a c.w. null or, for the trajectories with |z| > |z,|, is
such that [z| > |z,
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The appearance of o2 in the denominator of (95) shows once again why one has to approach
the limit o — 0 with due care. As o — 0 the slope of the central z(¢) curve in figure 45 approaches
zero, and in the limit all values of ¢ are present at z = 0; that is, the dislocation is stationary at
z = 0. To retain a dislocation ¢ has to tend to zero at least as fast as oAt (as is also illustrated by
the contracting trajectories in figure 9). If, in contrast, we had taken |cA7| < { < 1 there would
be no dislocation, for the point would be beyond the end of the trajectory, and the received
signal would be simply an attenuated and much advanced or retarded copy of the original pulse,
as discussed at the end of §3.2.

The comparison between (93) and (94) near to the limit [{| < |oA7| < 1 can be carried a
little further by expanding in powers of the small quantities {, cA7 and {/oAr. Equation (93)
gives

t=7 ¢ {1+1( ¢ )2—-%(0A7)2+%§2+...},

T oPAT 3\oAT
while (94) gives '
t= 7———§—{1 +1 (—g—)2+%(0'A'r)2+ }
otAT 3\oAr )

This illustrates the general principle given at the beginning of §3.6 that the expression for ¢
must be even in ¢. It is a vindication of our choice of T that the leading term is correct. The
correction term in ({/oAr)? is correctly reproduced and the remaining error is of order (oA7)?
and £

We should emphasize that, although the perturbation theory assumes |oAr| to be small, it is
not restricted to that very small neighbourhood of the c.w. nulls where |§| < |oAr|. However,
for fixed small o, as { increases, the dislocation time becomes large and then infinite. Therefore,
for fixed small o, one cannot expect to predict very large dislocation times with high absolute
accuracy. A fairer test is to choose a (large) time and ask how accurately ¢ is predicted. For
example, we might choose ¢ = oo, which represents an end point of the trajectory, and calculate
the corresponding value of { (call it {,,). The result given by the perturbation theory is, from (93),

|8s| = |oAT {1 + (0AT)?} 3, (96)
which is to be compared with the exact value,
|¢<| = |tanh oAT|, (97)

given by (94). The two formulae are very similar, both being approximately |ocA7| for small
|oA7| and approaching 1 as |ocA7| - 0. The maximum difference between them is 8.1%, (when
|cAT| = 1.43); when |oAT| = 0.1 they agree to 0.16%, and when |¢A7| = 0.01 they agree to
0.00179%,. Thus these are the accuracies with which the perturbation theory predicts the length
|2¢,| of the dislocation trajectories. Note that we only expect good results when |oAT| < 1.
Numerical comparison of (93) with (94) is shown in figure 14 for @/l allowed values of { and
a wide range of values of oA7, confirming our previous analysis. Since both equations are anti-
symmetric in §, it is sufficient to consider the range 0 < { < 1. Agreement is best near the origin
and (coincidentally) near¢—7 x — 1.50~1. When plotted in terms of the physical variables z and
¢ the results appear as in figures 4 and 5 (7 in figure 44 is the same as {7 in figure 145). For
comparison, note that the relative signs of { and z depend on x — x, through z,, and that the sign
of oAT depends on «. If 7, given by (6), is fairly large, the relative error in ¢ will be much less
than that in #—7 shown in figure 14 5. This figure shows clearly how changing oAt changes the
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length of the trajectory, or equivalently that decreasing A7 pushes the dislocation further into
the head or tail of the pulse.

To put the values of A7 into perspective, consider a pulse containing L carrier periods
(2n/w,) within its pulse length (20—1); that is o°/w, = 1/Ln. It must be remembered that At
depends on x. Taking a very short pulse with L = 3 gives cA7 = } = 0.17 on the trajectory at
smallest x in figure 144, that through N, and A7 = § = 1.7 on the trajectory at largest x in
figure 144, that through Q ;. A reasonably long pulse with L = 30 gives 0A7 = g5 and } respec-
tively. For the short pulse we can only expect good results from the perturbation theory for small
|x|, whereas for the longer pulse we can expect (very) good results for |%| < 2#,. This discussion
illustrates the fact that typically the convergence of a quasi-monochromatic perturbation theory,
such as ours, will be non-uniform in space.

To complement our discussion in §3.7 of the meaning of T, the dislocation reference time
which emerges from the perturbation theory, we relate 7; to the carrier reference time 7 in
figure 14c¢.

4.3. The piston radiator

Wright (19%77) has computed from first principles the acoustic wave dislocations produced
when a rigid plane circular piston, moving in an infinite plane baffle, is driven with a quasi-
monochromatic pulse having a Gaussian envelope. This ‘exact’ computation provides a further
test of the perturbation theory given in the present paper. It shows that the dislocation trajectories
follow very closely the surfaces defined by My = 0, M > 0, as expected. At the single c.w. null
the dislocation position and time are predicted exactly. Elsewhere on the trajectories preliminary
computations (Appendix D) show a maximum error in the dislocation times of about 109, for
a bandwidth o/w, = 1/(8n) ~ 0.1. The exact and the perturbation results naturally take
different forms, and much of the error probably arises from difficulties of comparison, as well as
from numerical problems. A full description of these results and comparisons will be given by
Wright & Berry (in preparation).

5. TIME DEPENDENCE OF THE SIGNAL REGEIVED ON
A DISLOCATION TRAJECTORY
We have concentrated so far on calculating the trajectory and time of the dislocation. We now
derive a simple result about the time dependence of the received signal.
A point receiver placed on a dislocation trajectory (not at a c.w. null) will find a signal y(z)
similar to that illustrated in figure 24, and given by equation (49). Substituting the amplitude-
phase representation (62), by using equations (63), we obtain

Y1) = {B() +1 5 (1) elromoo, (98)
where the real functions %(t) and #(¢) are given to second order (N = 2) by the left-hand sides
of (73a) and (73b): that is

R(t) = My{f(T) —vo f'(£)} — $(M ”‘A’Io')’éz)f”(f):}
S(t) = My f' () — 5(2M oo+ My o) S (8),
where # = t—T,. Because the amplitude of ¥(¢) falls to zero at the time of arrival of the dis-

location, ¢, say, both Z(¢) and #(t) will, in general, pass linearly through zero at ¢ = #5. But,
for a point on the trajectory, to the approximation of (734), Mg = 0 since we assume gy = 0.

(99)
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Thus #(t) is so weakly dependent on ¢ that, to this approximation, ¢ drops out altogether and
J(t) = 0. Thus

P () = A(r) e'?md), (100)
and near the dislocation

Y(t) o (t—tp) el@o—wt) (101)

approximately, with a real (positive or negative) constant of proportionality. (In the two-beam
model (100) is exact, as shown by (9).)

Now g, is the phase of the Fourier component of frequency w, in the response function a(w).
So the phase relation between the received signal in a pulse experiment and in the corresponding
continuous wave experiment, where the carrier wave is unmodulated, is very simple in this
approximation: the signals are in phase on one side of the dislocation point ¢ = {5, and in anti-
phase on the other, as illustrated in figure 25 (although this figure is drawn for the two-beam
model, the phase relation shown is general). It might be thought that this surprising general
relation with the continuous wave experiment, which holds for all ¢, would have to break down
if there were, for example, a deep dip in the envelope at some value of ¢, signalling that another
dislocation was nearby. But it has to be remembered that, when ¢ is small enough to make the
result a good approximation, the envelope of ¥(¢) will in fact be comparatively featureless (recall
that in the N = 0 approximation (66) it has the same shape as the original pulse, with no
dislocation).

The result does not hold for a general point in the field, but because it holds wherever My = 0
and ¢q = 0 it does apply even on those parts of the surfaces & that are not actually used as
trajectories for dislocations.

We may note that the physical signal represented by any chosen linear combination of real
and imaginary parts in (100) has equally spaced zeros. The dislocation time (¢ = ¢5) can lie at
any point of the cycle. In fact this attribute of a dislocation, its position in the cycle, can be made
the basis for a classification of dislocations, their movement and their structure. The classification
is not subject to the same small bandwidth limitation as that inherent in the perturbation theory,
and is more appropriately treated in a separate paper (Nye 1981) .

6. DiscussioN

In this paper §§2 and 3 embody two different approaches to the central problem of relating
pulse dislocations to continuous wave diffraction patterns. In the two-beam model of §2 the
results are exact and there is no restriction on bandwidth. The model shows in complete detail
some of the variety of behaviour that pulse dislocations can exhibit, particularly pair creation

t Note by J.F.N. 1t is stated in Nye (1981, p. 236) that, for small bandwidth, in the neighbourhood of a point
on the dislocation trajectory the plane-wave approximation to the continuous wave is identical in phase with the
plane carrier wave for the dislocation (wave vector k,,) as it passes through that point, except for a possible phase
reversal. In fact this is only true for a neighbourhood confined entirely to the trajectory. The reason is that the
phase relation derived in the present §5 holds only for points on the trajectory: therefore it gives no information
on the rate of change of phase normal to the trajectory. This means that it gives no information on the normal
component of k,,, but only on the two components that are tangential to the trajectory (and that constitute the
vector R,). The correct argument proceeds as follows. We have shown above that on the trajectory, for small
bandwidth, the phase of the dislocated pulse wave ¥ is the same (modulo 7) as the phase of the continuous wave
Yows say. It is shown in Nye (1981, p. 233) that on the trajectory, near an isolated dislocation; the phase of ¥
is the same (modulo ) as the phase of the carrier wave of the pulse dislocation, 1, ... It follows that, on the
trajectory, for small bandwidth near an isolated dislocation, the phases of all three waves ¥, ¥, . and ¥ ..., are
the same (modulo ).
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and how dislocations can appear and disappear in the head and tail of the pulse. It also shows
the important effect of pulse shape and bandwidth, not upon the positions of the dislocation
trajectories, but upon their length and upon the arrival times of the dislocations.

In the two-beam model the diffraction pattern is very simple, the medium is non-dispersive
but the pulse can have any shape. In contrast, the perturbation theory of § 3 deals with the most
general three-dimensional diffraction pattern but is restricted to small bandwidth; the greater
the path, or time delay, differences in the diffraction pattern, the smaller must be the bandwidth.
The medium is general (for example, inhomogeneous and dispersive) but all processes must be
linear. Section 3 is essentially an attempt to set up a workable computational scheme for deducing
the pulse dislocation behaviour from knowledge of the continuous wave diffraction pattern at
and near the centre frequency; it is based on the subtle problem of producing (via the choice of
T(r)), the fastest initial convergence of a functional series. We do not give precise conditions for
its validity; it is to be judged by comparing its results with those of exact computation. In the
two-beam model and the model of the piston radiator it serves very well to predict the dislocation
trajectories, and it is also successful in the much more delicate matter of predicting the dis-
location times. The results are expressed in terms of the c.w. diffraction pattern at the centre
frequency w, and its first and second derivatives with respect to frequency (the third derivative
being used to decide a choice of sign). As the bandwidth increases it is quite natural that the
method will need information about successively higher frequency derivatives if it is to give
accurate results. A particularly simple result is the prediction that the dislocation lines travel
approximately along the surfaces #: that is the surfaces in the c.w. diffraction pattern for w,
where the c.w. amplitude is a minimum with respect to changes in frequency.

In §3.8 we show how the perturbation series can be given a strict justification in a restricted
domain, near the c.w. null lines. In particular, we show how, for small bandwidth, the dis-
location trajectory surfaces do not, in general, actually contain the c.w. null lines but come very
near to doing so; they intersect the null lines in isolated points.

This study was carried out at the H. H. Wills Physics Laboratory, University of Bristol, at the
Department of Applied Mathematics, Queen Mary College, University of London and at the
Institut fiir Informationsverarbeitung, Universitat Tiibingen. We are grateful to Professor
M. V. Berry for his interest and encouragement. F.]J. W. thanks the Science Research Council
for financial support in Bristol, and in connection with the work in Tubingen thanks the
Alexander von Humboldt Foundation for a research fellowship, Professor W. Giittinger and
his staff for their hospitality, and Mr R. Brause for his assistance with the computer.

AprPENDIX A. THE T-INDEPENDENCE OF ¥ (f)

From its derivation, the infinite series (49) for ¥(¢) must be independent of 7, and therefore
the 7-dependences of the terms of the infinite sum must cancel. It is clear that this must happen,
and the purpose of this Appendix is to make clear kow it happens. We shall show that, via a
resummation, the delay 7 of the transfer function 4, generates a Taylor expansion of f(¢) about
t — T, thereby making explicit the mechanism by which T cancels.

The infinite-series representation for y(z) is

V() = D LA, [0t T). (A1)
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n
Here AP, = —a—%{a(w) e~1oT}

Wo

which, using Leibnitz’s formula, we may expand as
(n) = % ( )a(m)(_lT)n-me—iwo
Then (A 1) becomes B
lﬁ(t) = eyt E

n=0m=0m!(n _m) !

n 1

afm(—iT)nm fo(i— T).

Changing the order of summation to Y_¢ 3%_,, and writing n—m = n’ gives

Y1) = it 3 O (~AT ) (- T)

=0n'= Om'n"

= e—lopt Z a(m) 2 = f(m+n)(t_ T). (A2)

__()m

The resummation has generated the Taylor expansion of f™)(t) about ¢— 7 recognized in the
second sum in (A 2). Performing the second summation gives

<) lm
Y(0) = ot 3 a fome),
m= .

which is precisely the result of setting 7" = 0 in (A 1). Thus, whatever value of 7 is used in
(A 1) it drops out when the resummation is made.

The effect of delaying the transfer function by any time 7 is to advance by 7, via the above
Taylor resummation, the time at which the envelope function fand its derivatives are evaluated.

ArPPENDIX B. THE REAL-IMAGINARY REPRESENTATION OF
THE TRANSFER FUNCTION

In numerical applications of the perturbation theory it is most convenient to represent the
transfer function in terms of its real and imaginary parts as

a(r,w) = p(r, ) +ig(r, 0),
where p and g are real functions. This representation is also useful in analysing the neighbourhood
of a c.w. null, where a(r, w) = 0. Generically, at a c.w. null, p and ¢ pass linearly through zero
with respect to both r and w, whereas the amplitude M(r, ») and phase ¢(r, ») are both singular.
However, frequency derivatives of M and ¢ may be ‘regularized’ in the neighbourhood of a
c.w. null by multiplication by a suitable minimal power of M. It is essential, both numerically
and analytically, to work in terms of the regularized derivatives near c.w. nulls, and the purpose
of this Appendix is to find them in terms of p and ¢ and their frequency derivatives.
We start from the identity
M(r, ) "0 = p(r, 0) +ig(r, v), (B 1)
and subsequently drop the explicit dependences on r and w. Then
Mr=pg (B2

is a regular function of p and ¢, but A alone is not. Since p and ¢ are regular (generically linear)
functions of r and w near the null, M2 is a regular function of r and w, but M is not.
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We now differentiate (B 1) successively with respect to frequency using primes to denote
frequency derivatives, multiply by the complex conjugate of (B 1) and equate real and imaginary
parts to give, up to third order,

MM’ =pp' +4qq', (B 3a)

M2’ =pq - ql)’,} (B 32)

M(M"~ My™) = pp" +qg", (B 40)

M(2M'y’ + My") EM"—QP",} (B 44)

M(M" —3M'p™~3Mp'g") = pp" +44", (B 5a)
M@BM"y' +3M'g" + My" — Me'3) = pg" — q!)’”-} (B 52)

The right-hand side of each of these identities is regular at p = ¢ = 0, and generically tends to
zero linearly, since derivatives of p and ¢ will not have zeros coincident with those of # and ¢
themselves. Multiplying by A/2 preserves this regularity. The terms MM ' and M?2¢’ are already
in regularized form in (B 34, 4). To find the higher regularized derivatives we solve the above
equations, multiplying by M2 as necessary, to give

M3PM" = (p*+¢%) (pp" +99") + (b9 — q0')% (B 6a)
Mi" = (P+¢%) (pg"—qp") —2(pt" +499") (pg' - 91"),} (B62)
MSM™ = ($2+¢%)2 (pp" +4q9") +3(MM’) (M?¢")2 + 3(M?¢") (M*9"), (B 7a)

MS" = (p*+ )2 (pg" — qp") — 3(M>M") (M>3¢")
—3(MM’) (M%") + (M3p). (B 75)

(We have left formulae (B 7) in a mixed form for simplicity.)

The regularity of these expressions is important and quite subtle. Some of them could be
divided by a power of M2 to leave a result which tended to a finite limit as p and ¢ 0, but this
limit would depend on the direction in which it was taken. Therefore the result would be singular,
and the above regularized derivatives are in fact multiplied by the smallest possible powers of
M. Note the uniform increase of this power thus: A27»=1 M ™ and M2 ™.

For numerical purposes involving interpolation, it is obviously essential that the function
whose values are being interpolated is regular, otherwise wildly erroneous results may be
produced.

ArPENDIX C. REGULARITY OF THE DISLOCATION REFERENCE TIME 7{(r)

The quantity 7;(r) which we have called the ‘dislocation reference time’ is given by (755) as

Ty = po+sgn (g0 )y (Mo/ M), (CG1)

being defined only on the surfaces ¥ satisfying My = 0, My > 0. We have seen that these surfaces
contain lines on which A, = 0, and there the individual terms on the right of (C 1) are singular.
However, we now show that their sum is regular within %, so that our first-order perturbation
formulae (75) remain usable near a c.w. null, when properly expressed.
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To do so we re-express (C 1) in terms of the real-imaginary (p,¢q) representation using
Appendix B. First consider sgn (¢, ). Setting M = 0 in (B 75) gives

Migs = (£3+3)* (podo — doto) = 3(MEMG) (M) + (MGgp)®. (G2)

Let & represent distance in & from a c.w. null. Then generically p, = 0(8), g, = 0(8), and hence
M, = 0(4). From (B 6a) and (B 35)
MEMg = (£o95— qo86)* + 0(8%) = (M3g)*+ 0(6%);
so that from (G 2)
Mgy = —2(M3p)®+0(8%),
since from (B 36) Mg, = O(8). Therefore

sgn (@) ~ —sgn (o) = —sgn (P09 — Jobo)

as M,— 0.
Using this result in (C 1) gives, as M, 0,
M Ny (M§My)
R e~
ﬂOq(,)—qu(') sgn (1’0%"%[’6) ’ e 2 ” ”
= - - +(p3+ + H
BEE B+ @ {($096— 000)% + (£3+ 48) (Pobo + 90 90)}
_t%— 90!76_1’046-40176{1 L B+ 48) (posi +qoq{§)}% (C3)
pi+4s pi+ 48 (090 — 90 £0)*

The orders of the terms are given by
T, = 0(8™) - 00 {1+ 0(3)}

and the two divergences exactly cancel, leaving the finite result 7; = O(1) as M, 0.
Specifically, since popg + ¢o90 = 0 inF,

L pofio + 4090 _ 1 P90 — Jobo
T ~ =3 0 7 v T =5 7 7 04
! 2 po90—%b0 2 P*+90° (G

as M, 0. Higher-order terms in the expansion of (C 3) are clearly regular in p, and ¢,, and
hence T; is regular in r near a c.w. null, as required.

We now see that we can avoid using third derivatives for any trajectory which, to lowest order,
passes through a c.w. null, simply by choosing the sign of the square root so as to make 7; regular
within % through the null.

Finally we remark that, if ¢y were to change sign other than when M, = 0 or Mg =0, T;
would suffer a discontinuity, but this does not happen in any of the models so far studied. It
appears that g, is related to Mg, just as g is apparently related to M. These connections are
under investigation.

APPENDIX D. COMPUTATIONAL DETAILS

So far, computations have only been performed for problems in two space dimensions. These
arise from three-dimensional problems which have translational or rotational symmetry, or
simply from taking a plane section through a general system. A rectangular grid is set up over the
region of interest. At each grid point the transfer function a(r, w,) and its first three frequency
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derivatives are evaluated at the pulse carrier frequency. Most numerical processes involve inter-
polation, and only regular quantities can be reliably interpolated by polynomials in the standard
way. In practice, best results are obtained by interpolating a(r, w,) and its derivatives directly
where possible. The best way to display the behaviour of M, ¢, and their derivatives is to plot
contours, by using the regularized derivatives of Appendix B.

The first task is to find the dislocation trajectories. An array of values of M, M evaluated at
each grid pointis set up, and its zero-level contour traced. An excellent contouring routine is that
written by Heap (1974); this searches for a contour and then outputs sequentially the points
where it crosses the sides (and diagonals, in the more sophisticated version, which we recommend)
of grid rectangles. Each such point is a potential trajectory point. The contouring algorithm uses
linear interpolation, and it is easy to modify the code to interpolate simultaneously one or more
subsidiary arrays. In this way values of g, ¢, fo... are interpolated at each potential trajectory
point. The value of M3 Mg is calculated, and if it is positive the algorithm proceeds; otherwise it
seeks the next potential trajectory point. The values of M 3¢ and M2+ E are evaluated, where £
is a very small constant used to avoid division by zero at c.w. nulls, and sgn (g ) is evaluated
from M§g, or by the method discussed in Appendix C. From these we evaluate

T, = (Mo +sgn (¢,) y (M§M7)}/ (MG + E).

It is essential that the computer performs the addition before the division, so that the limiting
value of 7} at (or near) a c.w. null is found correctly. Finally the dislocation time ¢ is computed
from (755).

The trajectories, which generally fall into a number of disconnected curves, are plotted as
they are traced, and the sequence of values of 7; and ¢ stored. Later separate graphs for each
disconnected trajectory are plotted showing times as functions of distance along the trajectory.
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